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1 Introduction

Resource allocation in a public goods economy is central in public economics.

When there are multiple public goods, the problem is quite complex. We have to

examine how to allocate scarce resources not only between private consumption

and public goods, but also among the public goods.

In this paper, we consider a resource allocation problem in an economy with

multiple public goods. The allocation mechanism is simple voluntary contribution

(private provision of resources). As a specific feature of our model, we assume

private resources are non-consumable. This is because we focus on resource allo-

cation among the public goods. If there is only one public good, then the problem

is trivial: All agents contribute all their resources to public good, so an optimal

allocation is always achieved. But if there are multiple public goods, the problem

becomes nontrivial even if private resources are non-consumable. The basic prob-

lem, such as “whether or not is Nash equilibrium allocation Pareto optimal?”, is

unsolved in this framework.

This paper investigate the following classical problems of welfare economics in

a public goods economy with non-consumable resources.

(A) Are Nash equilibrium allocations Pareto optimal? If the answer is “no” in

general, when is it “yes”?

(B) Are any Pareto optimal allocations attainable through Nash equilibrium

when redistribution of private resources is possible?

We provide answers to the problems by establishing a version of fundamental

welfare theorems. With respect to (A), we derive several sufficient conditions for

Nash equilibrium allocations to be Pareto optimal (Proposition 1,2, and 3). To

deal with (B), we first give a characterization of allocations attainable through

Nash equilibrium with transfaer (Theorem 2). This result enables us to derive a

necessary and sufficient condition for any Pareto optimal allocation to be achieved

by Nash equilibrium with transfer (Proposition 4).

Our model may be regarded as income redistribution game formulated by

Nakayama (1980) if the number of public goods is equal to the one of agents
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in the economy 1. Nakayama (1980) provide sufficient conditions for Nash equilib-

rium of income redistribution games to be Pareto optimal. We extend his results

to the public goods economy. Our results admit the possibity of productions, and

are independent of the number of the agents in the economy.

The paper is organized as follows. In section 2, the basic model is introduced,

and the definition of Pareto optimality in our model is provided. Section 3 contains

the formal description of our games. Section 4 introduces allocations correspond-

ing to Nash equilibrium of the game, and gives a necessary condition for Nash

equilibrium allocation. Section 5 contains several sufficient conditions for the first

welfare theorem. In section 6, we investigate the possibility of the second welfare

theorem in our economy. Section 7 extends our model to the case of consumable

private resources, and discuss the results.

2 The Aumann-Kurz-Neyman Economy

Our description of the economy with public goods follows Aumann, Kurz, and Ney-

man [1], [2]. There are one non-consumable resources and m public goods. Public

goods are produced from resources. The production technology is represented by

a production function F : Rm
+ → Rm

+ such that for any x = (x1, . . . , xm) ∈ Rm
+

F (x) =

 f1(x1)
...

fm(xm)

 ,

where xi is resource input and fi is production function for public good i (i =

1, . . . ,m). Let H be a set of agents whose cardinality is n, i.e., |H| = n. The agent

h is characterized by the pair (uh, eh) of utility function uh : Rm
+ → R and initial

endowment of resources eh.

Definition 1. A public goods economy E is a list of the set of agents H, the

1Then the public good i should be interpreted as the redistributed income of agent i.
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production technology F , and the agents’ characteristics (uh, eh):

E =
(
H,F, (uh, eh)h∈H

)
.

We shall assume the standard convex environments.

Assumption 1.

(i) fi is increasing, continuous, and concave for i = 1, . . . ,m.

(ii) uh is increasing, continuous and strictly quasi concave for every h ∈ H.

(iii) eh ≥ 0 for all h ∈ H.

Let ē be the total resources of E ; ē :=
∑

h eh. The set of feasible resource input

vectors is denoted by C(ē):

C(ē) :=

{
x = (x1, . . . , xm) ∈ Rm

+

∣∣∣∣ m∑
i=1

xi ≤ ē

}
The feasible set of public goods bundle in E is denoted by A(E):

A(E) := {g ∈ Rm
+ | g ≤ F (x) for some x ∈ C(ē) }.

Definition 2. A feasible allocation g is Pareto optimal if there exists no g′ ∈ A(E)

such that uh(g
′) ≥ uh(g) for any h ∈ H and uh(g

′) > uh(g) for some h ∈ H.

3 The Public Goods Games

In this section, we formulate voluntary contribution to public goods as a strategic

form game. Let xh
i be a contribution (resource input) to public good i of agent h,

and xh = (xh
1 , . . . , x

h
m) be a contribution vector of agent h.
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Given total resources ē, the set of feasible resource allocation vectors is denoted

by T (ē);

T (ē) :=

{
t = (th)h∈H ∈ Rn

+

∣∣∣∣ ∑
h∈H

th = ē

}
.

Given the resource allocation t ∈ T (ē), a contribution xh of agent h is feasible if∑
i x

h
i ≤ th. Let Xh(th) be a set of feasible contribution of agent h;

Xh(th) :=

{
xh = (xh

1 , . . . , x
h
m) ∈ Rm

+

∣∣∣∣ m∑
i=1

xh
i ≤ th

}
.

Let X(t) be a set of profiles of feasible contributions; X(t) :=
∏

h∈H Xh(th). Note

that Xh(th) is compact and convex, so is X(t).

For any x ∈ X(t), let x̄ = (x̄1, . . . , x̄m) be a total contribution (aggregate

resource inputs); x̄ :=
∑

h∈H xh.

The payoffs are defined as follows:

Uh(x) := uh ◦ F (x̄) = uh

(
f1

( ∑
j∈H

xj
1

)
, . . . , fm

(∑
j∈H

xj
m

))
for h ∈ H

U(x) :=
∏
h∈H

Uh(x).

For any x = (xh)h∈H ∈ X(t), let x−h be the list (xk)k∈H\{h}.

Definition 3. Given t ∈ T (ē), a public goods game Gt(E) consists of the set of

player H, the set of strategy profiles X(t), and the payoff function U :

Gt(E) = (H,X(t), U).

Definition 4. A strategy profile x ∈ X(t) is Nash equilibrium of Gt(E) if for any

h ∈ H and any yh ∈ Xh(th)

Uh(x) ≥ Uh(y
h, x−h)

For consistency, we shall prove the existence of Nash equilibrium of our games

via a standard fixed point argument.
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Theorem 1. There exists a Nash equilibrium of Gt(E) for any t ∈ T (ē).

Proof . Note that Uh(x) is continuous and strictly quasi concave. Followig stan-

dard arguments, we define the best reply functions such that for any x ∈ X(t),

bh(x
−h) := arg max{ Uh(y

h, x−h) | yh ∈ Xh(th) }.

B(x) :=
∏
h∈H

bh(x
−h).

B : X(t) → X(t) is continuous and X(t) is compact and convex. By Brouwer’s

fixed point theorem, there exists x ∈ X(t) such that x = B(x). Then x is Nash

equilibrium of Gt(E).

Remark 1. In general, a Nash equilibrium of Gt(E) is not unique for t ∈ T (ē).

4 Nash Equilibrium Allocation

The goal of this section is to provide the necessary condition for an allocation to

be attainable through Nash equilibrium given a resource distribution (Lemma 1).

We first introuduce the concept of Nash equilibrium allocation which is the one

corresponding to Nash equilibrium of the public goods game.

Definition 5. Given t ∈ T (ē), a public goods bundle g = (g1, . . . , gm) is Nash

equilibrium allocation of Gt(E) if g = F (x̄) for some Nash equilbrium x of Gt(E)

where x̄ =
∑

h∈H xh.

Given g ∈ A(E), we define constrained feasible set Ag(E) as follows:

Ag(E) := {g′ ∈ A(E) | g′
i ≥ gi for all i }.

Note that A(E) is compact in Rm and so is Ag(E) for any g ∈ A(E). Given g ∈ Rm
+

and J ⊂ {1, . . . ,m}, we define g(J) = (g1(J), . . . , gm(J)) ∈ Rm
+ as follows;

gi(J) :=

gi (i /∈ J)

0 (i ∈ J).
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For notational simplicity, we write g(i) instead of g({i}).
Let us define the key concep in the following discussion.

Definition 6. Let g ∈ A(E) and I := {i | gi > 0}. g satisfies condition (M) if for

any i ∈ I, there exists h ∈ H such that uh(g) ≥ uh(g
′) for any g′ ∈ Ag(i)(E).

If an allocation g satisfies (M), then g may be regarded as a common solution of

several utility maximization problem over some constrained feasible set Ag(i)(E).

The next lemma states that (M) is the necessary condition for Nash equilibrium

allocation.

Lemma 1. Given t ∈ T (ē), let g be a Nash equilibrium allocation of Gt(E). Then

g satisfies condition (M).

Proof . If g is a Nash equilibrium allocation, then uh(g) ≥ uh(g
′) for any g′ ∈

Agh(E) and for all h ∈ H, where gh := F (x̄−xh) and x ∈ X(t) is Nash equilibrium

of Gt(E). Let us define Ih := {i | gi > gh
i }.

We will show that g is a maximizer of uh over Ag(Ih)(E). Suppose uh(g
′) > uh(g)

for some g′ ∈ Ag(Ih)(E). Then g(ε) := ε · g′ + (1 − ε) · g ∈ Agh(E) for suffiently

small ε and uh(g(ε)) > uh(g) by quasi concavity of uh, which is contradiction.

Since gi = 0 for i /∈
∪

h Ih, I =
∪

h Ih. Therefore for any i ∈ I, there exists

h ∈ H such that i ∈ Ih, which implies the result.

5 Optimality of Nash equilibrium Allocations

In this section, we provide several sufficient conditions for Nash equilibrium allo-

cation to be Pareto optimal.

Proposition 1. If all the agents’ preferences for public goods bundle are identical,

then there is a unique Nash equilibrium allocation of Gt(E) for any t ∈ T (ē)

Proof . Suppose all the agents’ preferences are identical. Then there exists the

(representative) utility function u(g) such that u(g) = uh(g) for all h ∈ H. Let g∗
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be Nash equilibrium allocation and I := {i | g∗
i > 0}. By Lemma 1, g∗ satisfies

condition (M). Under the identical preference assumption, (M) is equivalent to that

u(g∗) ≥ u(g) for any g ∈ Ag∗(i)(E) and any i ∈ I. We will show that u(g∗) ≥ u(g)

for any g ∈ A(E). Suppose the contrary. Then there exists g′ ∈ A(E) such that

u(g′) > u(g∗). It follows from (M) that g′ /∈ Ag∗(i)(E) for any i ∈ I, which implies

g′
j < g∗

j for some j /∈ I. It follows from the fact that g∗
j = 0 for j /∈ I that

g′ /∈ A(E), which is contradiction. Therefore g∗ ∈ arg max{u(g) | g ∈ A(E) }. The

maximizer g∗ must be unique by strict quasi concavity of u(g).

The next two results are extensions of the sufficient conditions for Pareto op-

timality in Nakayama (1980) to the public goods economy. Note that our results

are independent of the number of agents.

Proposition 2. Suppose x is Nash equilibrium of Gt(E) and g is the corresponding

Nash equilibrium allocation. If there exists h ∈ H such that xh
i > 0 for all i ∈ I =

{i | gi > 0 }, then g is Pareto optimal.

Proof . Let a be the agent such that xa
i > 0 for all i ∈ I. By the proof of Lemma

1, ua(g) ≥ ua(g
′) for any g′ ∈ Ag(I)(E). It follows from Ag(I)(E) = A(E) that there

is no g′ ∈ A(E) that Pareto dominates g.

Proposition 3. In the case of m = 2, any Nash equilibrium allocation of Gt(E) is

Pareto optimal for any t ∈ T (ē).

Proof . Let g be Nash equilibrium allocation of Gt(E) which is not Pareto op-

timal. Then there exists g′ such that uh(g
′) > uh(g) for all h ∈ H. Suppose

g ∈ R2
++. Without loss of generality, we assume g′ ∈ Ag(2)(E). This implies

g /∈ arg max uh(g
′′) subject to g′′ ∈ Ag(2)(E) for any h ∈ H, which contradicts

Lemma 1. If g1 = 0 and g2 > 0, then g′ ∈ Ag(2)(E). So g /∈ arg max uh(g
′′) subject

to g′′ ∈ Ag(2)(E) for any h ∈ H, which contradicts Lemma 1. If g1 > 0 and g2 = 0,

then g′ ∈ Ag(1)(E). So g /∈ arg max uh(g
′′) subject to g′′ ∈ Ag(1)(E) for any h ∈ H,

which contradicts Lemma 1.
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6 Decentralization of Pareto Optimal Allocation

In this section, we consider implementability of Pareto optimal allocations by

Nash equilibrium through resource redistribution (transfer). At first, we define the

concept of Nash equilibrium allocation under redistribution of private resources.

Definition 7. A public goods bundle g is Nash equilibrium allocation with transfer

in E if there exists t ∈ T (ē) such that g is Nash equilibrium allocation of Gt(E).

In general, the second welfare theorem does not hold in our economy: some

Pareto optimal allocation may not be Nash equilibrium allocation with transfer.

In the following theorem, we provide characterization of the allocations attainable

through Nash equilibrium with resource redistribution.

Theorem 2. Let g be a feasible allocation of public goods in E. Then g is Nash

equilibrium allocation with transfer if and only if g satisfies condition (M).

Proof . The “only if” part of the theorem is direct consequence of Lemma 1. We

will show the converse. Suppose g is a feasible allocation in E . Then there exists

resource inputs x̄ = (x̄1, . . . , x̄m) ∈ C(ē) such that g = F (x̄). Suppose that for

every i there exists hi ∈ H such that uhi
(g) ≥ uhi

(g) for any g ∈ Ag(i)(E). We

define the resource allocation vector t = (th)h∈H in the following way;

th =
∑
h=hi

x̄i

where th = 0 if h 6= hi for all i. Given t, consider the strategy profile x = (xh)h∈H ∈
X(t) such that

xh
j =

x̄i if j = i and h = hi

0 otherwise.

We show that the strategy profile x is a Nash equilibrium of Gt(E). For this,

it is sufficient to show that xh is best reply to x−h for h ∈ H. Fix h ∈ H

arbitrarily. If h = hi for some i, then the feasible set of public goods by agent h
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with his resources th is Ag(i)(E), given the contributions x−h of other agents. By the

assumption, uh(g) ≥ uh(g
′) for g′ ∈ Ag(i)(E). Therefore xh maximize Uh(x

h, x−h);

xh is a best reply to x−h. If h 6= hi for all i, then xh = (0, . . . , 0), th = 0 and

Xh(th) = {(0, . . . , 0)}. It is clear that xh is best reply to x−h. So x is a Nash

equilibrium of Gt(E). Therefore g is a Nash equilibrium allocation with transfer in

E .

Note that (M) is the necessary condition for Nash equilibrium allocation by

Lemma 1. The theorem above states that (M) is also sufficient condition for Nash

equilibrium allocation with transfer.

We consider the following question,“When is any Pareto optimal allocation

Nash equilibrium allocation with transfer?” By Theorem 2, the answer is as fol-

lows: “If any Pareto optimal allocation satisfies (M), then the second welfare

theorem holds”. To understand the situation more deeply, we look at (M) from a

slightly different angle. We paraphrase (M) in terms of diversity of preferences of

agents in the economy.

Definition 8. Fix g ∈ A(E) arbitrarily. The economy E satisfies Local Non-

Diversity condition at g (g-LND) if the following condition holds: if for some i

and for every h ∈ H, there exists g′ ∈ Ag(i)(E) such that uh(g
′) > uh(g), then

there exists g′′ ∈ Ag(i)(E) such that uh(g
′′) > uh(g) for all h. The economy E

satisfies Local Non-Diversity condition (LND) if E satisfies g-LND for all Pareto

optimal allocation g.

Remark 2. In the above definition, g′ may be different from every agent (g′ may

depend on the index of the agents). But g′′ must be independent of the index of

agents.

Suppose that for every h ∈ H, there exists g′ ∈ Ag(i)(E) such that uh(g
′) >

uh(g) for some i at g.2 Then all agents may agree to reduce the level of gi (“the

supply of the public good i is too much at g”). If LND is satisfied at g, then all

2g′ ∈ Ag(i)(E) is equivalent to g′i < gi when g′ 6= g.
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the agents can agree with the common plan g′′ how to reduce gi. In this sense, the

preferences among the agents may not be so diverse on the local area Ag(i)(E).

The following theorem states that the second welfare theorem holds in the

economy such that the agents’ prefereces for public goods are not so diverse at

Pareto optimal allocations.

Theorem 3. Any Pareto optimal allocation is Nash equilibrium allocation with

transfer in the economy E if and only if E satisfies LND.

Proof . Suppose E satisfies LND. Let g be a Pareto optimal allocation. If g is not

Nash equilibrium allocation with transfer, then it follows from Theorem 2 that for

every h ∈ H there exists g′ ∈ Ag(i)(E) such that uh(g
′) > uh(g) for some i. By

LND, there exists g′′ ∈ A(E) such that uh(g
′′) > uh(g) for all h. That contradicts

Pareto optimality of g.

Suppose E does not satisfy LND. Then for every h ∈ H, there exists g′ ∈
Ag(i)(E) such that uh(g

′) > uh(g) at some Pareto optimal g and for some i. This

implies that g is not maximizer of uh(g) over Ag(i)(E) for all h ∈ H. It follows

from Theorem 2 that g is not Nash equilibrium allocation with transfer.

Corollary 1. Suppose m = 2. Then any Pareto optimal allocation in E is Nash

equilibrium allocation with transfer in E.

Proof . In the case of m = 2, any economy E always satisfies LND.

Corollary 2. Suppose all the agents’ preferences for public goods bundle are iden-

tical. Then any Pareto optimal allocation in E is Nash equilibrium allocation with

transfer in E.

Proof . Identical preference of agents implies that E satisfies LND.

11



7 An Extension

In this section, we extend our model to the general one including consumable

private resources. The resource-consumption of agent h is denoted by zh. Let

denote z = (zh)h∈H . The extended utility function of agent h is denoted by

ũh(zh, g). An extended public goods economy Ẽ is a list (H, (ũh, eh)h∈H). An

extended public goods game is defined as (H,X, Ũ) where Ũ(x) :=
∏

h∈H Ũh(x)

and Ũh(x) := ũh(th −
∑m

i=1 xh
i , F (x̄)) where

∑m
i=1 xh

i ≤ th.

An allocation (z, g) ∈ Rn+m
+ is feasible if

∑
h zh + x ≤ ē and g ≤ F (x) for some

x ∈ C(ē). The set of feasible allocations in Ẽ is denoted by A(Ẽ). Let x̄ ∈ Rm
+ be

a feasible resource input vector in E , i.e., x̄ ≤ ē. We define a constrained feasible

set with respect to x̄, Ax̄(E), such as

Ax̄(Ẽ) :=

{
(z, g) ∈ Rn+m

+

∣∣∣∣ ∑
h∈H

zh + x ≤ ē and g ≤ F (x) for some x ∈ C(x̄)

}
.

Definition 9. Let x̄ ∈ Rm
+ be a feasible resource input vector in E . A feasible

allocation (z, g) is constrained Pareto optimal if there exists no (z, g′) ∈ Ax̄(Ẽ)

such that ũh(zh, g
′) ≥ ũh(zh, g) for all h ∈ H and ũh(zh, g

′) > ũh(zh, g) for some

h ∈ H.

Remark 3. The private consumption allocation z = (zh)h∈H is fixed in this defi-

nition.

Proposition 4. Suppose m = 2. Then any Nash equilibrium allocation of Gt(Ẽ)

is constrained Pareto optimal.

Proof . Let x∗ = (xh∗) be any Nash equilibrium of Gt(Ẽ) and (z∗, g∗) be the

corresponding equilibrium allocation. Let us define êh :=
∑

i x
h∗
i and ê := (êh)h∈H .

Now consider the auxiliary economy Ê = (H,F, (vh, êh)h∈H) and the induced game

Gê(Ê) with payoff function Vh(x) = ũh(z
∗
h, F (x̄). Then x∗ is Nash equilibrium

of Gê(Ê). For if there exists h ∈ H such that Vh(y
h, x−h∗) > Vh(x

∗) for some
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yh ∈ Xh(êh), then

Ũh(y
h, x−h∗) = ũh(z

∗
h, g

′) = Vh(y
h, x−h∗) > Vh(x

∗) = ũh(z
∗
h, g

∗) = Ũh(x
∗),

where g′ := F (yh +
∑

k 6=h xk∗). That contradicts the fact that x∗ is Nash equilib-

rium of Gt(Ẽ). Therefore g∗ is Nash equilibrium allocation of Ê . By Proposition

3, g∗ is Pareto optimal in Ê , which implies g∗ is constrained Pareto optimal in the

original economy Ẽ .

Next, we consider a modified version of constrained optimality.

Definition 10. Let x̄ ∈ Rm
+ be a feasible resource input vector in E . A feasible

allocation (z, g) is constrained Pareto optimal with respect to x̄ if there exists no

(z′, g′) ∈ Ax̄(Ẽ) such that ũh(z
′
h, g

′) ≥ ũh(zh, g) for all h ∈ H and ũh(z
′
h, g

′) >

ũh(zh, g) for all h ∈ H.

Remark 4. In this definition, the aggregate inputs x̄ = (x̄1, x̄m) is fixed, and

redistribution of private consumptions z = (zh)h∈H is permitted.

If we adopt this modified definition, then a Nash equilibrium allocation is not

constrained optimal with respect to the corresponding equilibrium resource inputs

in general even if m = 2.

For simplicity, we assume the utility functions (preferences) of every agent is

quasi linear, i.e., ũh(zh, g) = zh + vh(g) where vh is concave. Then the feasible

allocation (z∗, g∗) is constrained Pareto optimal with respect to x̄ if and only if

(z∗, g∗) ∈ arg max

{∑
h∈H

ũh(zh, g)

∣∣∣∣ (z, g) ∈ Ax̄(Ẽ)

}
.

That is equivalent to

g∗ ∈ arg max

{∑
h∈H

vh(g)

∣∣∣∣ ∃z : (z, g) ∈ Ax̄(Ẽ)

}
.

By the similar arguments in the proof of Proposition 4, g∗ can be regarded as

a Nash equilibrium allocation in the auxiliary economy Ê with non-consumable
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resources. g∗ is Pareto optimal in Ê by Propsition 3. This implies that there exists

λ ∈ Rn
+ such that

g∗ ∈ arg max

{∑
h∈H

λhvh(g)

∣∣∣∣ g ∈ A(Ê)

}
.

In general, λ is not colinear with (1, . . . , 1) for a Pareto optimal allocation in Ê .

Furthermore any Pareto optimal allocation is attainable as Nash equilibrium with

transfer by Corollary 1. We do not guarantee g∗ always maximizes
∑

h∈H vh(g)

over Ax̄(Ẽ). This is why a Nash equilibrium allocation in Ẽ is not the modified

version of constrained optimal in general.

8 Concluding Remarks

We study Nash equilibrium allocations of voluntary contribution of non-consumable

private resources in an economy with multiple public goods. We give us the sev-

eral sufficient conditions for Nash equilibrium allocations to be Pareto optimal

(the first welfare theorem). We provide us with also the necessary and sufficient

condition for Pareto optimal allocations to be Nash equilibrium allocations with

transfer (the second welfare theorem). We point out that both the first and the

second welfare theorems always hold when all the agents’ preferences for public

goods bundle are identical, or the number of public goods is two (Proposition 1,

3 and Corollary 1, 2). The economy with identical preferences or with two public

goods may be a special case. We cannot assume these settings without loss of

generality.
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