

理学研究科

数学專攻
京都産業大学大学院

GRADUATE SCHOOL KYOTO SANGYO UNIVERSITY

SM001

科 目 名	基盤数理A（代数）
担 当 者	村瀬 篤，田中 立志，東谷 章弘
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開 講 期 間	春学期
授 業 目 標	グレブナー基底，保型形式，ディリクレ級数に関する基礎知識を習得する。
授業内容•方法	現代代数学の基礎となるグレブナー基底，保型形式，ディリクレ級数などを講義する。担当者が 5 回ずつのリレー講義を行う。
授 業 計 画	第1回 多項式環とそのイデアル，ディクソンの補題，ヒルベルトの基底定理
	第2回 イニシャル単項式とイニシャルイデアル
	第3回 グレブナー基底
	第4回 ブッフバーガーのアルゴリズム
	第5回 グレブナー基底の応用：消去定理，イデアル所属問題
	第6回 上半平面の幾何
	第7回 モジュラー群
	第8回 モジュラー形式
	第9回 Eisenstein 級数とテータ級数
	第10回 次元公式と応用
	第11回 ディリクレ指標とガウス和
	第12回 乗法的関数の無限和とオイラー積
	第13回 リーマンゼータ関数
	第14回 ディリクレL 関数
	第15回 ディリクレの算術級数定理
評価方法•基準	レポート 100%
教材など	参考書： 日比孝之『グレブナー基底』（朝倉書店） J．P．セール『数論講義』（岩波書店）第 7 章 雪江明彦『整数論3解析的整数論への誘い』（日本評論社）など
備 考	予習•復習をしておくことが望ましい。

SMOO2

科 目 名	基盤数理 B（幾何）
担 当 者	牛瀧 文宏
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	春学期
授業目標	幾何学についての基本的事項を習得する。
授業内容•方法	講義
授 業計画	基本群と被覆空間，多様体についての基本的事項を講義する。内容は以下のとおり。
	第1回 位相空間 1
	第2回 位相空間2
	第3回 ホモトピー1
	第4回 ホモトピー2
	第5回 基本群1
	第6回 基本群2
	第7回 被覆空間1
	第8回 被覆空間2
	第9回 被覆空間3
	第10回 微分可能多様体1
	第11回 微分可能多様体2
	第12回 微分形式1
	第13回 微分形式2
	第14回 微分形式3
	第15回 いろいろな結果
評価方法•基準	平常点 40% ，レポート提出 20% ，レポートの内容 40\％
教材など	「トポロジーと幾何学入門」（シンガー，ソープ 訳 松江，一楽）
備 考	

科 目 名	基盤数理C（数学解析）
担 当 者	柳下 浩紀，渡辺 達也
週 時 間 数	2
単 位 数	2
配 当 年 次	1 年
開 講 期 間	春学期
授 業 目 標	微分方程式の基本事項を習得する。
授業内容•方法	微分方程式の基本事項について講義する。
授 業 計 画	第1回 縮小写像の原理
	第2回 常微分方程式の解の存在定理
	第3回 常微分方程式の解の微分可能性
	第4回 線形常微分方程式
	第5回 定数係数線形常微分方程式
	第6回 不動点の安定性
	第7回 周期解の安定性
	第8回 超関数と基本解
	第9回 緩増加超関数
	第10回 超関数のテンソル積と合成積
	第11回 ソボレフ空間
	第12回 偏微分方程式の基本解1
	第13回 偏微分方程式の基本解2
	第14回 シュレディンガー方程式の解の漸近挙動
	第15回 まとめと補足
評価方法•基準	授業への参加状況 40\％，授業態度 40\％，レポート 20%
教 材など	参考書等：ポントリャーギン『常微分方程式』（共立出版，1968） スメール，ハーシュ『力学系入門』（岩波書店，1976）熊ノ郷準『偏微分方程式』（共立出版，1978） アーノルド『常微分方程式』（現代数学社，1981） ブレジス『関数解析』（産業図書，1988） 堤誉志雄『偏微分方程式論』（培風館，2004）
備 考	特になし

SM004

科 目 名	基盤数理D（複素解析）
担 当 者	石田 久
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	春学期
授業目標	数学専攻の院生にとつて基礎知識となる複素解析学の理論を身につける。
授業内容•方法	学部レべルの講義では学ばなかつた複素解析学の話題からいくつかを選んで講義する。
授 業計 画	第1回 代数方程式－超越方程式1。
	第2回 代数方程式－超越方程式2。
	第3回 代数方程式－超越方程式3。
	第4回 初等幾何への応用 1 。
	第5回 初等幾何への応用2。
	第6回 留数定理（主値積分）と定積分 1 。
	第7回 留数定理（主値積分）と定積分 2 。
	第8回アーベルの定理といろんな無限級数の和 1。
	第9回 アーベルの定理といろんな無限級数の和 2 。
	第10回 等角写像と流体力学1。
	第11回 等角写像と流体力学2。
	第12回 等角写像と流体力学3。
	第13回 複素力学系1。
	第14回 複素力学系2。
	第15回 複素力学系3。
評価方法•基準	平常の取り組み 50\％レポート 50%
教材など	適宜プリント配付
備 考	

SM005

科 目 名	基盤数理E（応用数理 I）
担 当 者	矢野 裕子
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	春学期
授業目標	離散時間マルチンゲールの基䃊理論について理解を深めること。
授業内容•方法	マルチンゲールは，確率過程の時間発展に現れる数学的特性を定式化した概念であり，確率過程の研究における重要な方法を与える。本講義では，離散時間マルチンゲールに ついて学び，確率解析の基礎となる理論を習得することを目的とする。
授 業 計 画	第1回 条件付き期待値（1）
	第2回 条件付き期待値（2）
	第3回マルチンゲール（1）
	第4回 マルチンゲール（2）
	第5回ママルチンゲール（3）
	第6回ママルチンゲール（4）
	第7回マルチンゲール（5）
	第8回 ドゥーブの不等式，\＄L＾p\＄－収束（1）
	第9回 ドゥーブの不等式，\＄L｀p\＄－収束（2）
	第10回 一様可積分性，\＄L｀1\＄－収束（1）
	第11回 一様可積分性，\＄L＾1\＄－収束（2）
	第12回 後ろ向きマルチンゲール（1）
	第13回 後ろ向きマルチンゲール（2）
	第14回 任意抽出定理（1）
	第15回 任意抽出定理（2）
評価方法•基準	平常点 100%
教材など	R．Durrett，Probability：Theory and Examples，Cambridge University Press
備 考	

SM006

科 目 名	基盤数理F（応用数理 II）
担 当 者	三好 博之
週 時 間 数	2
単 位 数	2
配 当 年 次	1 年
開 講 期 間	春学期
授業目標	主に理論コンピュータ科学を研究するために必要な数理論理学•圈論の基礎的知識を学 ぶ。
授業内容•方法	数理論理学•圏論から基本的なトピックを取り上げて学ぶ。学部で行なっている講義の知識は既知とする。
授 業 計 画	第1回 普遍性，極限，余極限
	第2回 随伴
	第3回 普遍性と随伴の関係
	第4回 表現可能函手と米田函手
	第5回 米田の補題
	第6回 モナド
	第7回 モナドと随伴の関係
	第8回 代数と余代数
	第9回 チューリングマシンと計算可能性
	第10回 原始再帰関数と再帰関数
	第11回 一階述語論理
	第12回 自然数の理論
	第13回 形式的体系の符号化
	第14回 ゲーデルの不完全性定理
	第15回 ゲーデル＝ロッーの定理，ゲーデル＝チューリングの定理
評価方法•基準	受講状況（ 50% ）およびレポート課題（50\％）により総合的に評価する。
教材など	随時指示する。
備 考	受講生の予備知識や専門分野などによって，数学の他の分野に関連の深い内容に変更す ることがあり得る。

SM007

科 目 名	整数論特論
担 当 者	村瀬 篤
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	秋学期
授業目標	リー環の初歩について講義する。
授業内容•方法	講義に加えて，授業時間内の演習およびレポートを課す。
授 業計画	第1回 リー環の定義
	第2回 リー環の基本的性質
	第3回 リー環のイデアル
	第4回 リー環の表現
	第5回 べキ零および可解リ一環：（1）定義と性質
	第6回 ベキ零および可解リー環：（2）表現
	第7回 べキ零および可解リー環：（3）ウェイト
	第8回 カルタン部分環：（1）存在
	第9回 カルタン部分環：（2）共役
	第10回 ルートとルート空間分解
	第11回 半単純り一環のカルタン分解
	第12回 半単純リー環の例：（1）古典型
	第13回 半単純リ一環の例：（2）例外型
	第14回 ルート系
	第15回 単純ルートとワイル群
評価方法•基準	レポート（ 50% ），授業中に行ら演習（ 50% ）により評価する。
$\begin{array}{lll} \text { 教 } & \text { 材 } & \text { ど } \\ \text { 備 } & \text { 考 } \end{array}$	参考書：Carter＂Lie algebras of finite type and affine type＂

SM008

科 目 名	応用代数学特論
担 当 者	田中 立志
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開 講 期 間	秋学期
授 業 目 標	ベルヌーイ数やリーマンゼータ関数に関する基本事項を習得すること。
授業内容•方法	講義とレポートによる。
授 業 計 画	第1回 数列のべき和公式
	第2回 ベルヌーイ数とそのいくつかの性質
	第3回 形式的べき級数の計算
	第4回 ベルヌーイ数の母関数
	第5回 スターリング数
	第6回 スターリング数に関するいくつかの公式
	第7回 ベルヌーイ数とスターリング数
	第8回 クラウゼン・フォンシュタウトの定理
	第9回 クンマー合同式
	第10回 一般ベルヌーイ数
	第11回 ベルヌーイ多項式
	第12回 オイラー・マクローリンの和公式
	第13回 リーマンゼータ関数
	第14回 フルビッツゼータ関数とそのコンタワー積分表示
	第15回 フルビッツゼータ関数の関数等式
評価方法•基準	レポート（100\％）
教材など	参考書： 荒川恒男，伊吹山知義，金子昌信『ベルヌーイ数とゼータ関数』牧野書店（2001）
備 考	

SM009

科 目 名	代数的組合せ論特論
担 当 者	東谷 章弘
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開 講 期 間	秋学期
授 業 目 標	グレブナー基底の理論を用いて凸多面体の三角形分割を構成することについて学ぶ。
授業内容•方法	グレブナー基底と凸多面体の三角形分割の理論に関する講義を行う。
授 業 計 画	第1回 グレブナー基底とイニシャルイデアル（1）
	第2回 グレブナー基底とイニシャルイデアル（2）
	第3回 グレブナー基底とイニシャルイデアル（3）
	第4回 グレブナー基底とイニシャルイデアル（4）
	第5回 トーリックイデアルとそのイニシャルイデアル（1）
	第6回 トーリックイデアルとそのイニシャルイデアル（ 2 ）
	第7回 トーリックイデアルとそのイニシャルイデアル（ 3 ）
	第8回 凸多面体の三角形分割（1）
	第9回 凸多面体の三角形分割（2）
	第10回 凸多面体の三角形分割（ 3 ）
	第11回 凸多面体のイニシャル複体（1）
	第12回 凸多面体のイニシャル複体（ 2 ）
	第13回 凸多面体のイニシャル複体（ 3 ）
	第14回 凸多面体のイニシャル複体（4）
評価方法•基準：授業時の発表 50\％，レポート50\％	
教材など	参考書：日比孝之『グレブナー基底』
備 考	

SM010

科 目 名	位相幾何学特論
担 当 者	福井 和彦
週 時 間 数	2
単 位 数	2
配当年次	1年
開講期 間	秋学期
授業目標	図形の基本である多様体のトポロジーについての基本的事項を習得する。
授業内容•方法	講義
授業計画	第1回 ホモトピー群1
	第2回 ホモトピー群2
	第3回 相対ホモトピー群と完全系列1
	第4回 相対ホモトピー群と完全系列2
	第5回 相対ホモトピー群と完全系列3
	第6回 位相群と位相変換群
	第7回 ファイバー束1
	第8回 ファイバー束2
	第9回 ファイバー束の例
	第10回 ファイバー束のホモトピー群
	第11回 ベクトル束1
	第12回 ベクトル束2
	第13回 ベクトル束の基本的構成
	第14回 ベクトル束の分類
	第15回 まとめ
評価方法•基準	平常点40\％，レポート提出 20% ，およびレポートの内容 40\％
教材など	プリント配付，その都度指定する。
備 考	

SM011

科 目 名	低次元位相幾何学特論
担 当 者	山田 修司
週 時 間 数	2
単 位 数	2
配当年次	1年
開講期 間	秋学期
授業目標	3 次元を中心とした，2，3，4次元の位相幾何学を低次元位相幾何学という。3次元空間内の結び目を研究対象とする数学の理論は結び目理論とよばれ，低次元位相幾何学の主要な一分野である。結び目理論，3次元多様体理論では，最近量子群の表現，統計力学 の可解モデルなどを用いた位相不変量などが発見され，理論物理との関係が話題となっ ている。高次元とは様子の異なる低次元特有の種々の事柄について，特に結び目理論を中心に講義を行う。
授業内容•方法	結び目理論について授業を行ら。
授業計画	第1回 結び目の定義
	第2回 結び目の初等変形
	第3回 結び目の同値関係
	第4回 結び目の分解と合成
	第5回 ライデマイスター変形
	第6回 結び目のリスト
	第7回 絡み数
	第8回 結び目の彩色
	第9回 ザイフェルト曲面
	第10回 ザイフェルト行列
	第11回 ザイフェルト行列の不変量
	第12回 アレクサンダー・コンウェイ多項式
	第13回 結び目群
	第14回 結び目群の表現
	第15回トーラス結び目
評価方法•基準	平常点 100\％
$\begin{array}{lll} \hline \text { 教 材 な } & \text { ど } \\ \text { 備 } & \text { 考 } \end{array}$	授業開始時に指示する。

SM012

科 目 名	変換群論特論
担 当 者	牛瀧 文宏
週 時 間 数	2
単 位 数	2
配当年次	1年
開講期 間	秋学期
授業目 標	位相空間に群を作用させるという考え方とその重要性，有用性について理解することを目指す。
授業内容•方法	多様体やCW複体などの幾何学的対象に群を作用させたり，あるいは，ある種の条件下 での作用の可能性を研究したりすることにより，空間の対称性や構造を研究する分野， すなわち変換群論についての基整的な講義を行う。特にここでは，位相空間での変換群 を考える。
授 業 計 画	第1回 Definitions and fundamental properties of transformation groups
	第2回 Topological groups
	第3回 Semi－direct products of topological groups
	第4回 Topological transformation groups
	第5回 Fixed point sets
	第6回 Orbit and orbit spaces
	第7回 Homogeneous spaces and equivariant maps between them
	第8回 Orbit types and isotropy types
	第9回 Induced transformation groups
	第10回 Fiber bundles
	第11回 Twisted product
	第12回 Principal bundles and associated bundles
	第13回 Fiber products and induced bundles
	第14回 G－vector bundles
	第15回 The classification of G－vector bundles over G／H
評価方法•基準	平常の取り組み（ 50% ）とレポート（ 50% ）により総合的に評価する。
教材など	Katsuo Kawakubo：The theory of Transformation Groups，Oxford Univ．Press， 1991
備 考	

SM013

科 目 名	複素解析学特論
担 当 者	石田 久
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開講期 間	秋学期
授業目標	多項式写像の力学系の基礎理論を理解する。
授業内容•方法	多項式写像の基礎理論（特に，ジュリア集合，ファトゥー集合など）を講義する。
授 業 計 画	第1回 多項式写像1
	第2回 多項式写像2
	第3回 多項式写像3
	第4回 ジュリア集合，ファトゥー集合1
	第5回 ジュリア集合，ファトゥー集合2
	第6回 ジュリア集合，ファトゥー集合3
	第7回 不変成分 1
	第8回 不変成分 2
	第9回 不変成分3
	第10回 特異点 1
	第11回 特異点2
	第12回 特異点3
	第13回 遊走領域1
	第14回 遊走領域2
	第15回 遊走領域3
評価方法•基準	平常の取り組み 50\％レポート 50\％
教材など	参考書 A．F．Beardon：Iteration of rational functions．
備 考	

SM014

科 目 名	調和解析学特論
担 当 者	正岡 弘照
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開講 期 間	秋学期
授業目標	重み付き Sobolev 空間論の基本的な性質を理解することが目標である。
授業内容•方法	重み付きSobolev 空間論の基本的な性質を紹介する。
授 業 計 画	第1回 p－admissible weight
	第2回 doubling measure
	第3回 Poincare 不等式
	第4回 p－admissible weight の例
	第5回 A_{p} 条件
	第6回 weight 付き Sobolev 空間
	第7回 Lipschitz 関数
	第8回 Sobolev 空間と weight 付き Sobolev 空間
	第9回 Sobolev の埋め込み定理
	第10回 Sobolev 関数の gradient
	第11回 Sobolev 空間の Lattice 性
	第12回 無限遠で0になる Sobolev 関数の空間
	第13回 Sobolev 空間の収束定理
	第14回 Sobolev 空間の弱コンパクト性
	第15回 容量
評価方法•基準	平常点 50% ，レポート 50%
教材など	参考書等：T．Kilpelainen 他 2 名著，Nonlinear potential theory of degenerate elliptic equations
備 ${ }^{-10}$ 考	微分積分学，Lebesgue 積分，複素解析学，函数解析学の知識を前提として，講義はなさ れる。

SM015

科 目 名	関数解析学特論
担 当 者	渡辺 達也
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	秋学期
授業目標	関数解析学の微分方程式への応用として，変分法およびその半線形楕円型徴分方程式へ の応用について学ぶ。
授業内容•方法	授業方法として，担当教員がテキストの内容を解説する形態をとる。
授 業計画	第1回 Five illustrating problems
	第2回 Critical points via minimization（Basic results）
	第3回 Critical points via minimization（Application to a Dirichlet problem）
	第4回 The deformation theorem（Preliminaries）
	第5回 The deformation theorem（Some versions of the deformation theorem）
	第6回 The deformation theorem（A minimum principle and an application）
	第7回 The mountain pass theorem（Critical points of minimax type）
	第8回 The mountain pass theorem（The mountain pass theorem）
	第9回 The mountain pass theorem（Two basic applications）
	第10回 Critical points under constraints（Introduction）
	第11回 Critical points under constraints（Natural constraints）
	第12回 Critical points under constraints（Applications）
	第13回 Problems with lack of compactness（Two beautiful lemmas）
	第14回 Problems with lack of compactness（A problem in R ${ }^{\text {N }}$ ）
	第15回 まとめと補足
評価方法•基準	レポート 50% ，平常点（授業への参加度合い・発言など） 50%
教材など	参考書：D．Costa，『An invitation to variational metohds in differential equations』 （Birkhauser，2006）
備 考	特になし

SM017

科 目 名	非線形解析学特論
担 当 者	柳下 浩紀
週 時 間 数	2
単 位 数	2
配当年次	1年
開講期 間	秋学期
授業目標	非線形モデルを解析し，非線形現象を理解する基本的な手法を身に付ける。
授業内容•方法	ルベーグ積分，関数解析の基礎知識を前提として，非線形関数解析，及び非線形微分方程式について講義する。
授 業 計 画	第1回 フレッシェ微分
	第2回 高階微分
	第3回 合成写像の微分
	第4回 写像度の定義
	第5回 写像度の性質
	第6回 ルレイ・シャウダーの写像度
	第7回 ブラウアーの不動点定理
	第8回 シャウダーの不動点定理
	第9回 不動点延長定理
	第10回 中心多様体の存在
	第11回 中心多様体の滑らかさ
	第12回 中心多様体の近似
	第13回 分岐の必要条件
	第14回 サドル・ノード分岐
	第15回 ホップ分岐
評価方法•基準	授業への参加状況 50\％，授業態度 50\％
教材など	参考書等：L．Nirenberg，Topics in Nonlinear Functional Analysis（American Mathematical Society，1974） J．Carr，Applications of Centre Manifold Theory（Springer，1981）
備 考	

SMO19

科 目 名	確率過程論特論
担 当 者	矢野 裕子
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	秋学期
授業目標	確率解析の基㗏理論を理解すること。
授業内容•方法	ブラウン運動は最も典型的な確率過程である。本講義では，ブラウン運動について詳し く解説し，マルチンゲール理論，確率積分について講義する。確率解析の基礎となる理論を習得することを目標とする。
授 業計画	第1回 漼備
	第2回 ブラウン運動（1）
	第3回 ブラウン運動（2）
	第4回 ブラウン運動（3）
	第5回 ブラウン運動（4）
	第6回 ブラウン運動（5）
	第7回ママイチンゲール（1）
	第8回ママイチンゲール（2）
	第9回マルチンゲール（3）
	第10回 確率積分（1）
	第11回 確率積分（2）
	第12回 確率積分（3）
	第13回 確率積分（4）
	第14回 確率積分（5）
	第15回 まとめ
評価方法•基準 ：平常点 70% ，レポート 30%	
教材など	（参考書）舟木直久，確率微分方程式，岩波書店
備 考	

SMO21

科 目 名	数理情報学特論
担 当 者	三好 博之
週 時 間 数	2
単 位 数	2
配 当 年 次	1年
開講 期 間	秋学期
授業目 標	本講義ではプログラムの意味論や形式的手法に関連する分野からトピックを取り上げ て，計算を理論的に取り扱らための基本的な素養を身につけることを目的とする。
授業内容•方法	型理論と圈論と呼ばれる分野を取り上げる。
授業計画	型理論については論理と型理論の基礎とそれらの Curry－Howard 対応を扱う。そして特に実用的な型理論として Hindley－Milner の型理論とその型推論アルゴリズムを取り上げ る。Hindley－Milner の型理論は表現力と効率のバランスの取れた型理論であり，ML や Haskell など強い型付きの関数型プログラミング言語の基礎となっている。圈論につい ては圈，函手，自然変換などの基本的定義，極限，余極限，随伴，モナド，カルテシア ン閉圏といった基本的内容を扱った後，Moggi により考案されて関数型プログラミング言語 Haskell で導入されている計算モナドの理論をとりあげる。
評価方法•基準	受講状況（ 50% ）およびレポート課題（ 50% ）により総合的に評価する。
教材など	授業中に指定する。
備 考	受講生の予備知識や専門分野などによって，数学の他の分野に関連の深い内容に変更す ることがあり得る。

SM026

科 目 名	整数論特別研究A
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	春学期
授 業 目 標	リー環と保型形式は，分母公式を通じて密接な関係を持つ。春学期は，アフィン型のリ一環の理論を学びながら，様々な実例を計算する。
授業内容•方法	参考書としてあげた書籍などを講読する。また，多数の実例を手で計算することにより感覚をつかむ。
授 業 計 画	第1回 リー環の定義
	第2回 リー環の実例
	第3回 有限次元単純リー環
	第4回 古典型リー環
	第5回 例外型リー環
	第6回 カルタン行列
	第7回 カルタン行列に付随するリー環
	第8回 リー環のルート系
	第9回 リー環の単純ルート
	第10回 リー環のワイル群
	第11回 リー環の表現
	第12回 リー環の分母公式
	第13回 アフィンリー環
	第14回 アフィンリー環の表現論
	第15回 まとめ
評価方法•基準	授業における発表内容（50\％）およびレポート（50\％）によって評価する。
教材など	参考書：脇本実「無限次元リー環」
備 考	

SMO27

科 目 名	整数論特別研究 B
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講 期 間	秋学期
授業目標	リー環と保型形式は，分母公式を通じて密接な関係を持つ。秋学期は，保型形式の理論 を学びながら，様々な実例を計算する。
授業内容•方法	参考書としてあげた書籍や関係する論文などを講読する。
授業計画	第1回 上半平面
	第2回 モジュラー群
	第3回 1 変数保型形式の定義
	第4回 1 変数保型形式の性質
	第5回 1 変数保型形式の実例
	第6回 1 変数保型形式の次元公式
	第7回 テータ関数
	第8回 ヤコビモジュラー群
	第9回ヤコビ形式の定義
	第10回 ヤコビ形式の性質
	第11回ヤコビ形式の実例
	第12回 ベクトル系
	第13回 ベクトル系に付随するヤコビ形式
	第14回ヤコビの三重積公式
	第15回 まとめ
評価方法•基準	授業における発表内容（50\％）およびレポート（50\％）によって評価する。
教材など	参考書：Eichler－Zagier＂The theory of Jacobi forms＂
備 考	

SM028

科 目 名	整数論特別研究C
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	春学期
授 業 目 標	リー環と保型形式は，分母公式を通じて密接な関係を持つ。アフィンリー環の分母公式 を保型形式の理論の観点から研究するとともに，様々な実例を計算する。
授業内容•方法	関係する書籍や論文を講読するとともに，多くの実例を計算し，新たな現象の発見を目指す。
授 業 計 画	第1回 アフィンリー環の復習
	第2回 アフィンリー環の実現：non－twisted case
	第3回 アフィンリー環の実現：twisted case
	第4回 アフィンリー環の例
	第5回 アフィンリー環のルート系の構造
	第6回 アフィンリー環の単純ルート
	第7回 アフィンリー環のワイル群
	第8回 アフィンリー環の表現
	第9回 アフィンリー環の分母公式
	第10回 アフィンリー環の分母公式の証明
	第11回 テータ級数としてのアフィンリー環の分母公式
	第12回アフィンリー環の分母公式の保型性
	第13回アフィンリー環の分母公式の実例
	第14回アフィンリー環の分母公式の数値計算
	第15回 まとめ
評価方法•基準	授業における発表内容（50\％）とレポート（50\％）により評価する。
教材など	参考書：脇本実「無限次元リー環」
備 考	

SM029

科 目 名	整数論特別研究D
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	秋学期
授 業 目 標	リー環と保型形式は，分母公式を通じて密接な関係を持つ。アフィンリー環の指標公式 を保型形式の理論の観点から研究するとともに，様々な実例を計算する。
授業内容 ${ }^{\text {－}}$ 法	関係する書籍や論文を講読するとともに，多くの実例を計算し，新たな現象の発見を目指す。
授 業 計 画	第1回 アフィンリー環の表現：（1）Verma 加群
	第2回 アフィンリー環の表現：（ 2 ）最高ウェイト加群
	第3回 アフィンリー環の表現：（ 3 ）表現のあるカテゴリー
	第4回アフィンリー環の指標公式：（1）結果
	第5回 アフィンリー環の指標公式：（2）実例
	第6回 アフィンリー環の指標公式：（3）証明
	第7回 アフィンリー環の指標公式：（4）テータ級数との関係
	第8回 アフィンリー環の指標公式：（5）保型性
	第9回 アフィンリー環の指標公式：（6）基本加群の場合
	第10回 アフィンリー環の指標公式：（7）ベクトル系との関係
	第11回 べクトル系に付随するヤコビ形式：（1）定義と性質
	第12回 ベクトル系に付随するヤコビ形式：（ 2 ）保型性の証明
	第13回 ベクトル系に付随するヤコビ形式：（ 3 ）保型性の証明（続き）
	第14回 ベクトル系に付随するヤコビ形式：（4）実例の計算
	第15回 まとめ
評価方法•基準	授業における発表内容（50\％）とレポート（50\％）により評価する。
教 材 な ど	参考書：脇本実「無限次元リー環」
備 考	

SM030

科 目 名	応用代数学特別研究A
担 当 者	田中 立志
週 時 間 数	4
単 位 数	4
配 当 年 次	1 年
開 講 期 間	春学期
授 業 目 標	多重ゼータ値の基本事項を学ぶこと。
授業内容•方法	セミナー形式で行ら。計算ソフトPARI／GP の実践演習も行う。
授 業 計 画	第1回 級数による定義，いくつかの具体的な値
	第2回 ザギエの次元予想，調和積構造
	第3回 多重ポリログ，反復積分表示
	第4回 双対性，シャッフル積構造
	第5回 いろいろな関係式1：Hoffman の関係式，和公式
	第6回 いろいろな関係式2：大野関係式
	第7回 代数的定式化，有限複シャッフル関係式
	第8回 級数表示を用いた正規化
	第9回 積分表示を用いた正規化
	第10回 ガンマ関数1
	第11回 ガンマ関数2
	第12回 正規化の基本定理
	第13回 一般複シャッフル関係式
	第14回 和公式の導出，多重ゼータ関数の極
	第15回 まとめ
評価方法•基準	発表（80\％），レポート（20\％）
教材など	テキスト： 荒川恒男，金子昌信『多重ゼータ値入門』九大MIレクチャーノート vol． 23 （2010）
備 考	

SM031

科 目 名	応用代数学特別研究B
担 当 者	田中 立志
週 時 間 数	4
単 位 数	4
配 当 年 次	1 年
開 講 期 間	秋学期
授 業目 標	多重ゼータ値や多重L値の理解を深めること。
授業内容•方法	セミナー形式で行う。
授 業 計 画	第1回 導分関係式 1
	第2回 導分関係式2
	第3回 ニュートン補間級数
	第4回 ニュートン補間級数の解析的性質1
	第5回 ニュートン補間級数の解析的性質2
	第6回 有限多重和とその差分•反転
	第7回 有限多重和のニュートン補間級数
	第8回 調和積公式からくる関数等式
	第9回 川島関係式
	第10回 川島関係式と大野関係式，導分関係式
	第11回 多重L値の定義
	第12回 多重L値の代数的定式化，有限複シャッフル関係式
	第13回 多重L値の正規化定理
	第14回 多重L値の一般複シャッフル関係式，導分関係式
	第15回 まとめ
評価方法•基準	発表（80\％），レポート（20\％）
教材など	テキスト: 荒川恒男，金子昌信『多重ゼータ値入門』九大MI レクチャーノート vol． 23 （2010）
備 考	

SM032

科 目 名	応用代数学特別研究C
担 当 者	田中 立志
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	春学期
授 業 目 標	多重ゼータ値に関する研究を開始する。手計算や計算機を用いた実験などから何か面白 い現象を新たに発見し，修士論文の目処をつけることが目標である。
授業内容•方法	セミナー形式で行う。計算ソフトPARI／GP の実践演習も行う。
授 業 計 画	第1回 読んできた論文の内容について発表してもらう。
	第2回 読んできた論文の内容について発表してもらう。
	第3回 読んできた論文の内容について発表してもらう。
	第4回 読んできた論文の内容について発表してもらう。
	第5回 読んできた論文の内容について発表してもらう。
	第6回 読んできた論文の内容について発表してもらう。
	第7回 読んできた論文の内容について発表してもらう。
	第8回 読んできた論文の内容について発表してもらら。
	第9回 読んできた論文の内容について発表してもらう。
	第10回 読んできた論文の内容について発表してもらう。
	第11回 読んできた論文の内容について発表してもらら。
	第12回 読んできた論文の内容について発表してもらう。
	第13回 読んできた論文の内容について発表してもらう。
	第14回 読んできた論文の内容について発表してもらら。
	第15回 読んできた論文の内容について発表してもらう。
評価方法•基準	発表（100\％）
教 材など	参考書： 荒川恒男，金子昌信『多重ゼータ値入門』九大MIレクチャーノート vol．23（2010） 参考 URL ： http：／／pari．math．u－bordeaux．fr／ http：／／www．usna．edu／Users／math／meh／biblio．html
備 考	

SM033

科 目 名	応用代数学特別研究D
担 当 者 ：	田中 立志
週 時 間 数：	4
単 位 数：	4
配 当 年 次 ：	2年
開 講 期 間：	秋学期
授 業 目 標：	多重ゼータ値に関する結果を出し，修士論文を完成させること。
授業内容•方法 ：	セミナー形式で行ら。計算ソフトPARI／GP の実践演習も行う。
授 業 計 画 ：	第1回 読んできた論文の内容について発表してもらう。
	第2回 読んできた論文の内容について発表してもらう。
	第3回 読んできた論文の内容について発表してもらう。
	第4回 読んできた論文の内容について発表してもらう。
	第5回 読んできた論文の内容について発表してもらう。
	第6回 読んできた論文の内容について発表してもらら。
	第7回 読んできた論文の内容について発表してもらう。
	第8回 読んできた論文の内容について発表してもらう。
	第9回 読んできた論文の内容について発表してもらう。
	第10回 読んできた論文の内容について発表してもらら。
	第11回 読んできた論文の内容について発表してもらう。
	第12回 読んできた論文の内容について発表してもらう。
	第13回 読んできた論文の内容について発表してもらら。
	第14回 読んできた論文の内容について発表してもらら。
	第15回 読んできた論文の内容について発表してもらう。
評価方法•基準	発表（30\％），論文（70\％）
教材など ：	参考書： 荒川恒男，金子昌信『多重ゼータ値入門』九大MI レクチャーノート vol． 23 （2010）参考 URL ： http：／／pari．math．u－bordeaux．fr／ http：／／www．usna．edu／Users／math／meh／biblio．html
備 考	

SM038

科 目 名	低次元位相幾何学特別研究A
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	春学期
授業目標	3 次元を中心とした，2，3，4次元の位相幾何学を低次元位相幾何学という。3次元空間内の結び目を研究対象とする数学の理論は結び目理論とよばれ，低次元位相幾何学の主要な一分野である。結び目理論， 3 次元多様体理論では，最近量子群の表現，統計力学 の可解モデルなどを用いた位相不変量などが発見され，理論物理との関係が話題となっ ている。 この講義では，閉曲面および結び目理論の論文あるいは書物を輪講する。
授業内容•方法	指定した文献を数人の受講生で輪講する形式の授業を行う。
授業計画	第1回 Spaces
	第2回 Manifolds and submanifolds
	第3回 Knots and links
	第4回 Regular presentations
	第5回 Braid presentations
	第6回 Bridge presentations
	第7回 Two－bridge links
	第8回 Torus links
	第9回 Pretzel links
	第10回 Compositions of links
	第11回 Decompositions of links
	第12回 Definition of a tangle and examples
	第13回 How to judge the non－splittablility of a link
	第14回 How to judge the primeness of a link
	第15回 How to judge the hyperbolicity of a link
評価方法•基準	平常点 100%
教材など	授業開始時に指示する。
備 考	

SM039

科 目 名	低次元位相幾何学特別研究B
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	秋学期
授 業 目 標	3 次元を中心とした，2，3，4次元の位相幾何学を低次元位相幾何学という。3次元空間内の結び目を研究対象とする数学の理論は結び目理論とよばれ，低次元位相幾何学の主要な一分野である。結び目理論，3次元多様体理論では，最近量子群の表現，統計力学 の可解モデルなどを用いた位相不変量などが発見され，理論物理との関係が話題となっ ている。 この講義では，特に結び目理論に関する論文あるいは書物を，特別研究Aに引き続き輪講する。
授業内容•方法	指定した文献を数人の受講生で輪講する形式の授業を行う。
授 業 計 画	第1回 Non－triviality of a link
	第2回 Conway mutation
	第3回 Definition and existence of Seifert surfaces
	第4回 The Murasugi sum
	第5回 Sutured manifolds
	第6回 The Seifert matrix
	第7回 S－equivalence
	第8回 Number－theoretic invariants
	第9回 The reduced link mudule
	第10回 The homology of a branched cyclic covering manifold
	第11回 Link groups and link group systems
	第12回 Presentations of a link group
	第13回 Subgroups and quotient groups of a link group
	第14回 The Alexander module
	第15回 Invariants of a Λ－module
評価方法•基準	平常点 100\％
教 材 な ど	授業開始時に指示する。
備 考	

SMO40

科 目 名	低次元位相幾何学特別研究C
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開講期 間	春学期
授業目標	3 次元を中心とした，2，3，4 次元の位相幾何学を低次元位相幾何学といら。3次元空間内の結び目を研究対象とする数学の理論は結び目理論とよばれ，低次元位相幾何学の主要な一分野である。結び目理論， 3 次元多様体理論では，最近量子群の表現，統計力学 の可解モデルなどを用いた位相不変量などが発見され，理論物理との関係が話題となっ ている。 この講義では，特に 3 次元多様体論に関する論文あるいは書物を，特別研究 B に引き続 き輪講する。
授業内容•方法	指定した文献を数人の受講生で輪講する形式の授業を行う。
授 業計画	第1回 Graded Alexander polynomials
	第2回 Torres conditions
	第3回 The Jones polynomial
	第4回 The skein polynomial
	第5回 The Q and Kauffman polynomials
	第6回 Properties of the polynomial invariants
	第7回 The skein polynomial via a state model
	第8回 Preliminaries from representation theory
	第9回 Link invariants of trace type
	第10回 The skein polynomial as a link invariant of trace type
	第11回 The Temperley－Lieb algebra
	第12回 Periodic knots
	第13回 Freely periodic knots
	第14回 Invertible knots
	第15回 Amphicheiral knots
評価方法•基準	平常点 100\％
教材など	授業開始時に指示する。
備 考	

SM041

科 目 名	低次元位相幾何学特別研究D
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配当年次	2年
開講 期 間	秋学期
授業目標	3 次元を中心とした，2，3，4 次元の位相幾何学を低次元位相幾何学といら。3 次元空間内の結び目を研究対象とする数学の理論は結び目理論とよばれ，低次元位相幾何学の主要な一分野である。結び目理論， 3 次元多様体理論では，最近量子群の表現，統計力学 の可解モデルなどを用いた位相不変量などが発見され，理論物理との関係が話題となっ ている。 この講義では，特に 3 次元多様体論に関する論文あるいは書物を，特別研究Cに引き続 き輪講する。
授業内容•方法	指定した文献を数人の受講生で輪講する形式の授業を行う。
授業計画	第1回 Symmetries of a hyperbolic knot
	第2回 The symmetry group
	第3回 Canonical decompositions and symmetry
	第4回 Unknotting operations
	第5回 Properties of Gordian distance
	第6回 Estimation of the unknotting number
	第7回 Local transformations of links
	第8回 The knot cobordism group
	第9回 The matrix cobordism group
	第10回 Link cobordism
	第11回 A normal form
	第12回 Constructing 2－konts
	第13回 Seifert hypersurfaces
	第14回 Exteriors of 2－konts
	第15回 Cyclic covering spaces
評価方法•基準	平常点 100\％
教材など	授業開始時に指示する。
備 考	

SM042

科 目 名	変換群論特別研究A
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	春学期
授業目標	代数的位相幾何学に関する洋書を講読することにより，位相幾何学の基礎的技能を身に つけ，修士論文に備える。
授業内容•方法	被覆空間論，ホモトピー論などの代数的位相幾何学の知識を数学書を読むことで取得す る。
授 業計画	第1回 Locally Trivial Maps．Covering Spaces
	第2回 Fibre Transport．Exact Sequence
	第3回 Classification of Coverings
	第4回 Connected Groupoids
	第5回 Existence of Liftings
	第6回 The Universal Covering
	第7回 The Mapping Cylinder
	第8回 The Double Mapping Cylinder
	第9回 Suspension．Homotopy Groups
	第10回 Loop Space
	第11回 Groups and Cogroups
	第12回 The Cofibre Sequence
	第13回 The Fibre Sequence
	第14回 The Homotopy Extension Property
	第15回 Transport
評価方法•基準	発表（60\％）課題（30\％）質問への受け答え（10\％）
教材など	Tom Dieck：Algebraic Topology（Ems Textbooks in Mathematics）
備 考	

SM043

科 目 名	変換群論特別研究B
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講 期 間	秋学期
授業目標	代数的位相幾何学に関する洋書講読を続けることにより，位相幾何学の基礎的技能を身 につけ，修士論文に備える。
授業内容－方法	ホモトピー論についての更なる知識の獲得を目指す。
授業計画	第1回 Replacing a Map by a Cofibration
	第2回 Characterization of Cofibrations
	第3回 The Homotopy Lifting Property
	第4回 Transport
	第5回 Replacing a Map by a Fibration
	第6回 The Exact Sequence of Homotopy Groups
	第7回 The Role of the Base Point
	第8回 Serre Fibrations
	第9回 The Excision Theorem
	第10回 The Degree
	第11回 The Brouwer Fixed Point Theorem
	第12回 Higher Connectivity
	第13回 Classical Groups
	第14回 Proof of the Excision Theorem
	第15回 Further Applications of Excision
評価方法•基準	発表（60\％），課題（30\％），質問への受け答え（10\％）
教材など	Tom Dieck：Algebraic Topology（Ems Textbooks in Mathematics）
備 考	

SM044

科 目 名	変換群論特別研究C
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配当年次	2年
開講 期 間	春学期
授業目標	位相変換群論における問題意識の持ち方を知り，修士論文作成に必要な基礎事項を体得 する。
授業内容•方法	セミナー形式，講義方式，論文添削方式を使い分け，修士論文作成に向けて行動を始め る。
授 業計画	第1回 数学の論文のスタイルについて
	第2回 等変写像
	第3回 等変写像と同変写像
	第4回 ボルスクウラムの定理
	第5回 ボルスクウラムの定理と同値な命題
	第6回 ボルスクウラムの定理の一般化
	第7回 ワッサーマンの結果
	第8回 ボルスクウラム群
	第9回 強ボルスクウラム群
	第10回 有限位相空間の代数トポロジー（マッコード理論）
	第11回 有限位相空間の代数トポロジー（ストング理論）
	第12回 極小有限位相空間
	第13回 同変有限位相空間論
	第14回 修士論文に向けての課題設定
	第15回 修士論文に向けての青写真を描く
評価方法•基準	発表（60\％）課題（30\％）質問への受け答え（10\％）
教材など	必要な文献を適宜案内するが，受講生自身も必要と思われるところを自学するために旺盛に書物や論文を読んで頂きたい。

備 考：

SM045

科 目 名	変換群論特別研究D
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配当年次	2 年
開講期 間	秋学期
授業目標	修士論文を完成させる。
授業内容•方法	セミナー形式，講義方式，論文添削方式を使い分け，修士論文完成に向けて邁進する。
授業計画	第1回 夏休みに考えたことの点検
	第2回 主定理の背景の確認
	第3回 主定理の証明への準備
	第4回 主定理の証明のための補助定理の証明
	第5回 主定理の証明の概略の作成
	第6回 主定理の証明 1
	第7回 主定理の証明 2
	第8回 応用例の作成
	第9回 テフの指導
	第10回 本文の作成1
	第11回 本文の作成2
	第12回 序文の作成
	第13回 応用例の記述
	第14回 総点検1
	第15回 総点検 2
評価方法•基準	論文（80\％）発表（20\％）
教材など	必要な文献を適宜案内するが，受講生自身も必要と思われるところを自学するために旺盛に書物や論文を読んで頂きたい。
備 考	

SM046

科 目 名	複素解析学特別研究A
担 当 者	石田 久
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	春学期
授 業目 標	輪読およびコンピュータシミュレーションを通して，複素力学系の理論を理解する。
授業内容•方法	参考書の輪読とC言語によるプログラミング
授 業 計 画	第1回 プログラミングの基礎1
	第2回 プログラミングの基礎2
	第3回 プログラミングの基礎3
	第4回 プログラミングの基礎4
	第5回 プログラミングの基礎5
	第6回 多項式写像を題材にしたプログラミング 1
	第7回 多項式写像を題材にしたプログラミング2
	第8回 多項式写像を題材にしたプログラミング3
	第9回 多項式写像を題材にしたプログラミング 4
	第10回 多項式写像を題材にしたプログラミング5
	第11回 ジュリア集合，ファトゥー集合についての参考書輪読 1
	第12回 ジュリア集合，ファトゥー集合についての参考書輪読2
	第13回 ジュリア集合，ファトゥー集合についての参考書輪読3
	第14回 ジュリア集合，ファトゥー集合についての参考書輪読 4
	第15回 ジュリア集合，ファトゥー集合についての参考書輪読5
評価方法•基準	平常の取り組み 50\％レポート 50\％
教材など	参考書 A．F．Beardon：Iteration of rational functions．
備 考	

SM047

科 目 名	複素解析学特別研究B
担 当 者	石田 久
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	秋学期
授業目 標	輪読およびコンピュータシミュレーションを通して，複素解析学特論の理解を深める。
授業内容•方法	参考書の輪読とC言語によるプログラミング
授 業計 画	第1回 周期点1
	第2回 周期点2
	第3回 周期点3
	第4回 不変成分 1
	第5回 不変成分 2
	第6回 不変成分3
	第7回 特異点1
	第8回 特異点2
	第9回 特異点3
	第10回 特異点4
	第11回 Connectedness locus 1
	第12回 Connectedness locus 2
	第13回 Connectedness locus 3
	第14回 Connectedness locus 4
	第15回 Connectedness locus 5
評価方法•基準	平常の取り組み 50\％レポート 50\％
教材など	参考書 A．F．Beardon：Iteration of rational functions．
備 考	

SM048

科 目 名	複素解析学特別研究C
担 当 者	石田 久
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	春学期
授 業目 標	修士論文のテーマの設定
授業内容•方法	文献研究・コンピュータシミュレーション
授 業 計 画	第1回 修士論文のテーマと関連する文献の研究1
	第2回 修士論文のテーマと関連する文献の研究2
	第3回 修士論文のテーマと関連する文献の研究3
	第4回 修士論文のテーマと関連する文献の研究 4
	第5回 修士論文のテーマと関連する文献の研究5
	第6回 プログラム作成・シミュレーションの解析1
	第7回 プログラム作成・シミュレーションの解析2
	第8回 プログラム作成・シミュレーションの解析3
	第9回 プログラム作成・シミュレーションの解析4
	第10回 プログラム作成・シミュレーションの解析5
	第11回 修士論文の作成の仕方 1
	第12回 修士論文の作成の仕方 2
	第13回 修士論文の作成の仕方 3
	第14回 修士論文の作成の仕方 4
	第15回 修士論文の作成の仕方5
評価方法•基準	平常の取り組み 50\％レポート 50\％
教材 な ど	参考書 A．F．Beardon：Iteration of rational function
備 考	

SM049

科 目 名	複素解析学特別研究D
担 当 者	石田 久
週 時 間 数	4
単 位 数	4
配当年次	2年
開講 期 間	秋学期
授業目 標	修士論文の完成
授業内容•方法	問題解決のためのセミナー
授業計画	第1回 コンピュータシミュレーションの解析 1
	第2回 コンピュータシミュレーションの解析2
	第3回コンピュータシミュレーションの解析3
	第4回 問題解決のためのセミナー1
	第5回 問題解決のためのセミナー2
	第6回 問題解決のためのセミナー3
	第7回 修士論文の作成1
	第8回 修士論文の作成2
	第9回 修士論文の作成3
	第10回 修士論文の作成4
	第11回 修士論文の作成5
	第12回 修士論文の作成6
	第13回 修士論文の作成7
	第14回 修士論文の作成8
	第15回 発表会の準備
評価方法•基準	平常の取り組み 50\％レポート 50\％
教材など	参考書 A．F．Beardon：Iteration of rational functions．
備 考	

SM050

科 目 名	調和解析学特別研究A
担 当 者	正岡 弘照
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	春学期
授 業 目 標	極値的長さの定義及び基本的な性質を理解することが目標である。
授業内容•方法	適当な書籍を読むことにより，極値的長さの定義及び基本的な性質を学ぶ。
授 業 計 画	第1回 極値的長さの定義
	第2回 極値的長さの基本的な性質
	第3回 極値的長さの基本的な不等式
	第4回 測度の除外的な族
	第5回 Clarksonの不等式
	第6回 L L 空間の完備性
	第7回 収束定理
	第8回 曲線の族
	第9回 Admissible weight
	第10回 曲線の族に関する極値的長さ
	第11回 曲線の族に関する極値的長さの基本的な性質
	第12回 曲線の族列に関する極値的長さの収束定理
	第13回 曲線の族列に関する極値的長さの不変性
	第14回 曲線の族列に関する極値的長さに関する 0 集合
	第15回 対称的な集合
評価方法•基準	平常点 50% ，レポート 50%
教材など	参考書等：Makoto Ohtsuka，Extremal length and Precise Functions in 3－space およ び Makoto Ohtsuka，Dirichlet problem，extremal length and prime ends，van Nostrand

SM051

科 目 名	調和解析学特別研究B
担 当 者	正岡 弘照
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	秋学期
授業目標	極値的長さの理解を深めることが目標である。
授業内容•方法	適当な書籍を読むことにより，極値的長さを用いて，解析学への種々の応用を学ぶ。
授 業計画	第1回 ACL 関数の定義と例
	第2回 ACL 関数の基本的な性質
	第3回 BL ${ }^{\text {p }}$ 関数の定義と例
	第4回 BL ${ }^{\text {p }}$ 関数の基本的な性質
	第5回 AC ${ }^{\text {p }}$ 関数の定義と例
	第6回 AC ${ }^{\text {P }}$ 関数の基本的な性質
	第7回 ACL 関数と ACP 関数の関係
	第8回 BL ${ }^{\text {p }}$ 関数と $A C^{\text {P }}$ 関数の関係
	第9回 p－precise 関数の定義と例
	第10回 p－precise 関数の基本的な性質
	第11回 BL ${ }^{\text {P }}$ 関数の分解定理
	第12回 基本的な不等式
	第13回 Sobolevの不等式
	第14回 Sobolevの開集合
	第15回 Nikodymの開集合
評価方法•基準	平常点50\％，レポート 50%
教材など	参考書等 ：Makoto Ohtsuka，Extremal length and Precise Functions in 3－space およ びMakoto Ohtsuka，Dirichlet problem，extremal length and prime ends，van Nostrand
備 考	微分積分学，Lebesgue 積分，複素解析学，函数解析学の知識を前提とする。

SM052

科 目 名	調和解析学特別研究C
担 当 者	正岡 弘照
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	春学期
授 業 目 標	修士論文の内容の設定とそれに伴ら情報収集
授業内容•方法	適当な論文を読むことにより，極値的長さを用いた解析学への種々の応用を学び，修士論文作成に向けた情報収集を行う。
授 業 計 画	第1回 容量の定義
	第2回 容量の基本的な性質
	第3回 極値的長さと容量の関係
	第4回 容量 0 の集合
	第5回 Sobolev 容量の定義
	第6回 容量と Sobolev 容量の関係
	第7回 Sobolev 空間における除外集合
	第8回 p－ラプラシアンに関する優解
	第9回 障害問題
	第10回 John－Nirenberg の補題
	第11回 p－ラプラシアンに関する優調和関数
	第12回 p－ラプラシアンに関する調和関数
	第13回 p－ラプラシアンに関する正値調和関数
	第14回 弱 Harnack 不等式
	第15回 Harnack 不等式
評価方法－基準	平常点50\％，レポート 50%
教材など	参考書等：T．Kilpelainen 他 2 名著，Nonlinear potential theory of degenerate elliptic equations
備 考	微分積分学，Lebesgue 積分，複素解析学，函数解析学の知識を前提とする。

SM053

科 目 名	調和解析学特別研究D
担 当 者	正岡 弘照
週 時 間 数	4
単 位 数	4
配 当 年 次	2 年
開 講 期 間	秋学期
授 業 目 標	修士論文の完成
授業内容•方法	修士論文の作成指導
授 業 計 画	第1回マルチン境界
	第2回 掃散
	第3回 境界 Harnack 不等式
	第4回マルチン関数
	第5回 ミニマルマルチン関数
	第6回マルチンの表現定理
	第7回 ミニマル開近傍
	第8回 正値優調和関数のマルチン境界挙動
	第9回 p－ラプラシアンに関するマルチン境界
	第10回 p－ラプラシアンに関する掃散
	第11回 p－ラプラシアンに関する境界 Harnack 不等式
	第12回 特異関数
	第13回 特異関数のミニマル性に関する議論
	第14回 正値 p－調和関数に関する表現定理の可能性
	第15回 正値 p－優調和関数に関する境界挙動
評価方法•基準	平常点 50% ，レポート 50%
教 材など	参考書等 ：Lester L．Helms 著，An Introduction to Potential Theory， Wiley－Interscience，New York， 1969
備 考	微分積分学，Lebesgue 積分，複素解析学，函数解析学の知識を前提として，講義はなさ れる。

SM054

科 目 名	関数解析学特別研究A
担 当 者	渡辺 達也
週 時 間 数	4
単 位 数	4
配 当 年 次	1 年
開 講 期 間	春学期
授 業目 標	関数解析学の基礎であるソボレフ空間について学ぶ。
授業内容•方法	授業方法として，受講者がテキストの内容を整理し，発表する形態をとる。
授 業 計 画	第1回 The L＇p spaces
	第2回 The Holder inequality
	第3回 Interpolation inequality
	第4回 Approximation of L＾p functions
	第5回 Density results
	第6回 Weak derivatives
	第7回 Sobolev spaces
	第8回 Chain rules
	第9回 Sobolev embedding theorem
	第10回 Sobolev embedding theorem（special case）
	第11回 Rellich－Kondrachov theorem
	第12回 Hilbert spaces
	第13回 The Riesz representation theorem
	第14回 Weak convergence
	第15回 （とめと補足
評価方法•基準	授業での発表 80\％，レポート 20%
教材など	参考書：J．Jost，『Postmodern Analysis』（Springer，2005）日本語版あり 参考書：H．Brezis，『Functional analysis』（Springer，2010）日本語版あり
備 考	- 受講者の取得知識•興味によって，テキストの変更もありらる。 - 適宜学んだ内容をまとめるレポートを課す（レポートは tex で作成する）

SMO55

科 目 名	関数解析学特別研究B
担 当 者	渡辺 達也
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	秋学期
授業目標	関数解析学の基礎であるソボレフ空間について学ぶ。
授業内容•方法	授業方法として，受講者がテキストの内容を整理し，発表する形態をとる。
授 業 計 画	第1回 Laplace equation
	第2回 Dirichlet principle
	第3回 Direct method of Calculus of Variations
	第4回 Weakly lower semi－continuity
	第5回 Results for general problems
	第6回 Regularity of weak solutions
	第7回 L｀2 estimates
	第8回 Estimates of higher derivatives
	第9回 Results for general operators
	第10回 Global estimates
	第11回 Weak maximum principle
	第12回 Sub－and super－solutions
	第13回 Hopf＇s lemma
	第14回 The eigenvalue problem for the Laplace operator
	第15回 まとめと補足
評価方法•基準	授業での発表 80% ，レポート 20%
教材など	参考書：J．Jost，『Postmodern Analysis』（Springer，2005）日本語版あり 参考書：H．Brezis，『Functional analysis』（Springer，2010）日本語版あり
備 考	- 受講者の取得知識•興味によって，テキストの変更もありらる。 - 適宜学んだ内容をまとめるレポートを課す（レポートは tex で作成する） - テキストが終了次第，学術論文を読み始める。

SM056

科 目 名	関数解析学特別研究C
担 当 者	渡辺 達也
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	春学期
授 業 目 標	変分問題として記述される微分方程式を解析する。 近年発表された変分問題に関する学術論文を読み，未解決な問題を明らかにする。
授業内容•方法	授業方法として，受講者が論文の内容を理解し，解説する形態をとる。
授 業 計 画	第1回 学術論文1（イントロ部分）
	第2回 学術論文 1 （証明部分）
	第3回 学術論文1（補足）
	第4回 学術論文 1 （未解決問題の確認）
	第5回 学術論文2（イントロ部分）
	第6回 学術論文2（証明部分）
	第7回 学術論文2（補足）
	第8回 学術論文 2 （未解決問題の確認）
	第9回 学術論文3（イントロ部分）
	第10回 学術論文3（証明部分）
	第11回 学術論文3（補足）
	第12回 学術論文3（未解決問題の確認）
	第13回 修士論文（研究テーマの設定）
	第14回 修士論文（研究テーマの検証）
	第15回 まとめと補足
評価方法•基準	授業での発表 80\％，レポート 20%
教材など	適宜指定する。
備 考	特になし

SM057

科 目 名	関数解析学特別研究D
担 当 者	渡辺 達也
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	秋学期
授 業 目 標	変分問題として記述される微分方程式を解析する。 近年発表された変分問題に関する未解決問題を解決し，修士論文を作成する。
授業内容•方法	授業方法として，研究の進展状況とその成果の発表を逐次行う。必要に応じて学術論文 の輪読も並行して行う。
授 業 計 画	第1回 春学期の復習と現状認識
	第2回 修士論文（研究テーマの設定）
	第3回 修士論文（研究テーマの検証）
	第4回 修士論文（証明の完成）
	第5回 修士論文（証明の検証）
	第6回 修士論文（原稿の作成）
	第7回 修士論文（原稿の修正）
	第8回 修士論文（texによる原稿の作成）
	第9回 修士論文（texによる原稿の修正）
	第10回 修士論文（イントロの作成）
	第11回 修士論文（参考文献の追加•修正）
	第12回 修士論文（最終校正）
	第13回 修論発表会の準備（原稿作成）
	第14回 修論発表会の漼備（beamer によるスライド作成）
	第15回まとめと補足
評価方法•基準 ：授業での発表 50\％，修士論文 50%	
教材など	適宜指定する。
備 考	特になし

SM062

科 目 名	非線形解析学特別研究A
担 当 者	桝下 浩紀
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	春学期
授 業目 標	偏微分方程式で記述された非線形現象の解析手法を身に付ける。
授業内容•方法	2 階楕円型偏微分方程式についてゼミ形式で学ぶ。
授 業 計 画	第1回 ルベーグ積分の復習
	第2回 線形作用素の一般論の復習
	第3回 具体的な関数空間の復習
	第4回1変数楕円型方程式の変分法的定式化
	第5回1変数楕円型方程式の解の存在
	第6回 1 変数楕円型方程式の解の評価
	第7回 多変数楕円型方程式の変分法的定式化
	第8回 多変数楕円型方程式の解の存在
	第9回 多変数楕円型方程式の解の評価
	第10回 解の滑らかさ（全空間の場合）
	第11回 解の滑らかさ（半空間の場合）
	第12回 解の滑らかさ（一般領域）
	第13回 解の比較定理（全空間の場合）
	第14回 解の比較定理（半空間の場合）
	第15回 解の比較定理（一般領域）
評価方法•基準	演習への取り組み 30% ，発表 30\％，レポート 30% ，授業への参加状況 10%
教材など	参考書等：D．Gilbarg，N．S．Trudinger，Elliptic Partial Differential Equations of Second Order（Springer，1977）
備 考	

SM063

科 目 名	非線形解析学特別研究B
担 当 者	栁下 浩紀
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開 講 期 間	秋学期
授 業目 標	偏微分方程式で記述された非線形現象の解析手法を身に付ける。
授業内容•方法	放物型微分方程式についてゼミ形式で学ぶ。
授 業 計 画	第1回 連続半群の定義
	第2回 連続半群の生成作用素
	第3回 ヒレ・吉田の定理
	第4回 解析的半群の定義
	第5回 解析的半群の生成作用素
	第6回 生成作用素の分数べき
	第7回 非斉次線形放物型方程式の解の定義
	第8回 非斉次線形放物型方程式の解の積分表示
	第9回 非斉次線形放物型方程式の解の評価
	第10回 半線形放物型方程式の解の定義
	第11回 半線形放物型方程式の解の積分表示
	第12回 半線形放物型方程式の解の評価
	第13回 平衡解近傍における安定多様体
	第14回 平衡解近傍における安定葉層
	第15回 平衡解近傍における中心多様体
評価方法•基準	演習への取り組み 30\％，発表 30\％，レポート 30% ，授業への参加状況 10\％
教材など	参考書等 ：D．Henry，Geometric Theory of Semilinear Parabolic Equations（Springer， 1981）
備 考	

SM064

科 目 名	非線形解析学特別研究C
担 当 者	榤下 浩紀
週 時 間 数	4
単 位 数	4
配 当 年 次	2 年
開講 期 間	春学期
授業目標	偏微分方程式で記述される非線形現象を数学解析の立場から解明する。
授業内容•方法	近年，発表された論文での成果なども含め，非線形解析学の現状を把握する。
授業計画	第1回 様々な文献（関数解析など）の調査
	第2回 様々な文献（楕円型方程式など）の調査
	第3回 様々な文献（放物型方程式など）の調査
	第4回 様々な文献（関数解析など）の輪読
	第5回 様々な文献（楕円型方程式など）の輪読
	第6回 様々な文献（放物型方程式など）の輪読
	第7回 近年の成果（関数解析など）の比較
	第8回 近年の成果（楕円型方程式など）の比較
	第9回 近年の成果（放物型方程式など）の比較
	第10回 文献の調査（進行波など）
	第11回 文献の調査（スポット解など）
	第12回 文献の調查（大域構造など）
	第13回 近年の成果の比較（進行波など）
	第14回 近年の成果の比較（スポット解など）
	第15回 近年の成果の比較（大域構造など）
評価方法•基準：：発表 50% ，論文の理解度 50%	
教材など	未定
備 考	

SM065

科 目 名	非線形解析学特別研究D
担 当 者	榤下 浩紀
週 時 間 数	4
単 位 数	4
配 当 年 次	2 年
開講 期 間	秋学期
授業目標	偏微分方程式で記述される非線形現象を数学解析の立場から解明する。
授業内容•方法	近年，発表された論文での成果などを取りまとめ，独自の視点から検討する。
授業計画	第1回レポート作成：関数解析など
	第2回 レポート作成：楕円型方程式など
	第3回レポート作成：放物型方程式など
	第4回 レポート作成：進行波など
	第5回 レポート作成：スポット解など
	第6回 レポート作成：大域構造など
	第7回 修士論文のテーマの選定：問題の把握
	第8回 修士論文のテーマの選定：予想の提起
	第9回 修士論文のテーマの選定：予想の検討
	第10回 修士論文の下書き：導入
	第11回 修士論文の下書き：本論
	第12回 修士論文の下書き：文献
	第13回 修士論文の作成：導入
	第14回 修士論文の作成：本論
	第15回 修士論文の作成：文献
評価方法•基準：：研究への取り組み 50% ，レポート 50%	
教材など	未定
備 考	

SM070

科 目 名	確率過程論特別研究A
担 当 者	矢野 裕子
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講期 間	春学期
授業目標	確率論及び確率過程の基礎理論について理解を深めること。
授業内容•方法	確率論及び確率過程の基礎理論について学ぶ。尚，セミナー形式で授業を行ら。
授業計画	第1回 漼備
	第2回 大数の法則（1）
	第3回 大数の法則（2）
	第4回 大数の法則（3）
	第5回 大数の法則（4）
	第6回 大数の法則（5）
	第7回 中心極限定理（1）
	第8回 中心極限定理（2）
	第9回 中心極限定理（3）
	第10回 中心極限定理（4）
	第11回 中心極限定理（5）
	第12回 ランダムウォーク（1）
	第13回 ランダムウォーク（2）
	第14回 ランダムウォーク（3）
	第15回 まとめ
評価方法•基準 ：ゼミ発表 100%	
教材など	R．Durrett，Probability：Theory and Examples，Cambridge University Press
備 考	

SM071

科 目 名	確率過程論特別研究B
担 当 者	矢野 裕子
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講期 間	秋学期
授業目標	確率過程の基礎理論について理解を深めること。
授業内容•方法	確率過程の基礎理論について学ぶ。尚，セミナー形式で授業を行う。
授業計画	第1回 漼備
	第2回 マルコフ連鎖（1）
	第3回マルコフ連鎖（2）
	第4回マルコフ連鎖（3）
	第5回 マルコフ連鎖（4）
	第6回 エルゴード定理（1）
	第7回 エルゴード定理（2）
	第8回エルゴード定理（3）
	第9回エルゴード定理（4）
	第10回 ブラウン運動（1）
	第11回 ブラウン運動（2）
	第12回 ブラウン運動（3）
	第13回 ブラウン運動（4）
	第14回 ブラウン運動（5）
	第15回 まとめ
評価方法•基準 ：ゼミ発表 100%	
教材など	R．Durrett，Probability：Theory and Examples，Cambridge University Press
備 考	

SM072

科 目 名	確率過程論特別研究C
担 当 者	矢野 裕子
週 時 間 数	4
単 位 数	4
配 当 年 次	2 年
開講期 間	春学期
授業目標	ランダムウォークと離散確率解析について理解を深めること。
授業内容•方法	確率過程の典型例であるランダムウオークと離散確率解析について学ぶ。尚，セミナー形式で授業を行う。
授 業 計 画	第1回 淮備
	第2回 ランダムウォーク（1）
	第3回 ランダムウォーク（2）
	第4回マルチンゲール表現定理
	第5回 離散確率解析（1）
	第6回 離散確率解析（2）
	第7回 確率差分方程式（1）
	第8回 確率差分方程式（2）
	第9回 確率差分方程式（3）
	第10回 確率差分方程式（4）
	第11回 局所時間，レヴィの定理（1）
	第12回 局所時間，レヴィの定理（2）
	第13回 離散レイーナイト定理（1）
	第14回 離散レイーナイト定理（2）
	第15回 まとめ
評価方法•基準：ぜミ発表 100%	
教材など	（参考書）藤田岳彦，ランダムウォークと確率解析，日本評論社
備 考	

SM073

科 目 名	確率過程論特別研究D
担 当 者	矢野 裕子
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	秋学期
授 業 目 標	修士論文を執筆すること。またその成果を発表すること。
授業内容•方法	離散 Azema－Yor マルチンゲールに関する研究を行ら上で必要となる理論を学び，修士論文を執筆し，また研究成果を発表する。尚，セミナー形式で授業を行う。
授 業 計 画	第1回 漼備
	第2回 Azema－Yorマルチンゲール（ 1 ）
	第3回 Azema－Yor マルチンゲール（ 2 ）
	第4回 Azema－Yorマルチンゲール（ 3 ）
	第5回 離散 Azema－Yorマルチンゲール（1）
	第6回 離散 Azema－Yorマルチンゲール（2）
	第7回 離散 Azema－Yorマルチンゲール（3）
	第8回 関連した研究について（1）
	第9回 関連した研究について（ 2 ）
	第10回 関連した研究について（3）
	第11回 修士論文執筆•研究成果発表準備（1）
	第12回 修士論文執筆•研究成果発表準備（2）
	第13回 修士論文執筆•研究成果発表準備（3）
	第14回 修士論文執筆•研究成果発表準備（4）
	第15回 まとめ
評価方法•基準	ゼミ発表 100%
教材など	授業中に指示する。
備 考	

SM078

科 目 名	数理情報学特別研究A
担 当 者	三好 博之
週 時 間 数	4
単 位 数	4
配 当 年 次	1 年
開 講 期 間	春学期
授 業 目 標	コンピュータ科学の様々な側面の理論的基礎について研究を行う。
授業内容•方法	コンピュータ科学の様々な側面，特にプログラム意味論に関する理論的基礎。
授 業 計 画	コンピュータの高性能化とソフトウェアの複雑化およびコンピュータネットワークの普及により，プログラミングにおいても理論的基礎に基づいたプログラミング言語による安全なバグの少ないプログラム開発が求められるようになってきている。本講義ではそ の要求を勘案して，関数型プログラミング言語の処理系についての理論的基礎について論文を中心に輪講形式で検討する。その中で修士論文に向けての各自の研究テーマを絞 ってゆく。
評価方法•基準	授業への参加状況（100\％）により評価する。
教材など	授業中に指定する。
備 考	受講生の予備知識や専門分野などによって，数学の他の分野に関連の深い内容に変更す ることがあり得る。

SM079

SM080

科 目 名	数理情報学特別研究C
担 当 者	三好 博之
週 時 間 数	4
単 位 数	4
配当年次	2年
開講期 間	春学期
授業目標	情報科学の数理的な手法を身につけ，研究を遂行する
授業内容•方法	書籍，論文の講読，論文の執筆指導，など。
授 業計画	情報科学における数理的な手法に関する書籍や論文を読み，その研究手法を身につける。 さらに，それらの中から関心のあるテーマを見つけ，論文を執筆する。
評価方法•基準	研究の状況を見て判断する（ 100% ）。
教材など	研究指導中に指示する。
備 考	受講生の予備知識や専門分野などによって，数学の他の分野に関連の深い内容に変更す ることがあり得る。

SM081

```
科 目 名 : 数理情報学特別研究D
担 当 者: 三好 博之
週 時 間 数 : 4
単 位 数: 4
配 当 年 次: 2年
開 講 期 間: 秋学期
授業目標: 情報科学の数理的な手法を身につけ, 研究を遂行する。
授業内容•方法 : 書籍, 論文の講読, 論文の執筆指導, など。
授 業 計 画 : 情報科学における数理的な手法に関する書籍や論文を読み, その研究手法を身につける。
さらに, それらの中から関心のあるテーマを見つけ, 論文を執筆する。
評価方法•基準 : 研究の状況を見て判断する ( \(100 \%\) ) 。
教 材 など: 研究指導中に指示する。
備 考 : 受講生の予備知識や専門分野などによって, 数学の他の分野に関連の深い内容に変更す
ることがあり得る。
```

SM082

科 目 名	整数論研究
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	8
配 当 年 次	※
開講期 間	※
授業目標	ヤコビ形式に関する対称性と無限積の関係を理解し，新しい現象の発見を目指す。
授業内容•方法	ヤコビ形式についての基本文献（Eichler－Zagier 等）を講読する。また，Mathematica などによる数値実験を行い，新しい現象の発見を試みる。
授 業 計 画	第1回ヤコビ形式
	第2回ヤコビEisenstein級数
	第3回 尖点形式
	第4回 テイラー展開
	第5回 Hecke作用素
	第6回 半整数ウェイトのモジュラー形式
	第7回ヤコビ形式と半整数ウェイトのモジュラー形式の関係
	第8回 ジーゲルモジュラー群
	第9回 上半空間の幾何
	第10回 ジーゲル保型形式の定義
	第11回 ジーゲル保型形式の実例
	第12回 ジーゲル保型形式の性質
	第13回 ジーゲル保型形式のフーリエ展開
	第14回 ジーゲル保型形式のフーリエ・ヤコビ展開
	第15回 Saito－Kurokawa リフト
	第16回 テータ級数
	第17回 ヤコビ形式の環の定義と性質
	第18回 ヤコビ形式の環の構造
	第19回 ヤコビ形式の空間の次元
	第20回ヤコビ形式の零点
	第21回ヤコビ形式の対称性の定義
	第22回ヤコビ形式の対称性と漸化式
	第23回 ベクトル系とヤコビ形式
	第24回 ベクトル系と対称性
	第25回 ベクトル系の実例
	第26回 格子とベクトル系
	第27回 格子とリー環
	第28回 数値実験のためのソフトウエア
	第29回 ヤコビ形式の実例と数値実験
	第30回 まとめ
評価方法•基準 ：研究内容（ 50% ）および授業時の発表（ 50% ）によって評価する。	
教材など	参考書：Eichler－Zagier＂The theory of Jacobi forms＂
備 考	

SM084

科 目 名	応用位相研究
担 当 者	山田 修司
週 時 間 数	4
単 位 数	8
配 当 年 次	※
開講 期 間	※
授業目標	低次元位相幾何学および位相空間における計算理論および 3 次元空間における球充填問題などを研究する。
授業内容•方法	論文，書籍を読み，セミナー形式で解説を行う。コンピュータを用いて計算実験を行う。研究結果を論文としてまとめる。
授業計画	第1回 読むべき低次元位相幾何学に関する論文および書籍を探す
	第2回 選択した低次元位相幾何学に関する論文および書籍を読む
	第3回 選択した文献についてセミナーを行ら
	第4回 取り組むべき研究の対象をしぼる
	第5回 研究対象に関する文献を探す
	第6回 研究対象に関する文献を読む
	第7回 研究対象に関する文献をさらに読む
	第8回 研究課題を探す
	第9回 研究課題を見つける
	第10回 研究課題に関する先行する結果がないが調べる
	第11回 研究課題に関する先行する結果についての文献を読む
	第12回 研究課題に関して，先行する結果をさらに進めることができるか考える
	第13回 研究課題が，先行する研究によって解かれていれば，他の課題を探す
	第14回 課題を探すため論文を読む
	第15回 先行研究に残された課題を探す
	第16回 残された課題について，他の論文を読むことで解決策を探す
	第17回これまでの研究結果についてセミナーを行ら
	第18回 課題が解けそうであれば，それについて研究を行ら
	第19回 研究結果についてセミナーを行う
	第20回 研究がさらに進みそうであれば，それについてセミナーを行う
	第21回 研究結果をまとめるため，論文にすることを考える
	第22回 論文の書き方について調べる
	第23回 一応まとめた論文について，セミナーを行う
	第24回 研究集会での発表を考える
	第25回 研究集会での発表について準備をする
	第26回 論文の投稿を考える
	第27回 論文の投稿先を選ぶ
	第28回 論文に訂正を指示されたとき，書き直しをする
	第29回 論文の再投稿をする
	第30回 最終的な研究発表をする
評価方法•基準 ：論文および研究発表の内容（100\％）	
教材など	研究が始まった後で適宜指定する。
備 考	

SM085

科 目 名	変換群論研究
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	8
配 当 年 次	※
開講 期 間	※
授業目標	代数トポロジーを用いた変換群論の手法を獲得し，新しい現象の発見を目指す。
授業内容•方法	変換群論についての高度な文献の中から第1章と第2章を講読する。必要に応じて，ほ かの文献も参照する。
授 業 計 画	第1回 基本概念 1
	第2回 一般的注意
	第3回 変換群論の基本的な定理 1
	第4回 変換群論の基本的な定理 2
	第5回 ファンクター的な捉え方 1
	第6回 ファンクター的な捉え方 2
	第7回 変換群論の基本的な定理 2
	第8回 微分可能多様体
	第9回 管状近傍
	第10回 スライス定理
	第11回 部分群の族
	第12回 同変写像
	第13回 バンドル 1
	第14回 バンドル 2
	第15回 ベクトルバンドル
	第16回 オービットカテゴリー
	第17回 基本群
	第18回 被覆空間
	第19回 変換群論の代数 1
	第 20 回 変換群論の代数 2
	第21回 同変CW複体
	第22回 複体の間の写像（一般論）
	第23回 複体の間の写像（具体例への適応）
	第24回 障害理論（同変版）1
	第25回 障害理論（同変版） 2
	第26回 ホップの分類定理 1
	第27回 ホップの分類定理 2
	第28回 ボルスクウラムの定理との関連の考察
	第29回 表現空間の間の写像
	第30回 表現空間の間の写像のホモトピー類
評価方法•基準 ：発表（50\％），提出物（50\％）	
教材など	Tammo tom Dieck＂Transformation Groups＂Walter de Gruyter
備 考	

SM089

科 目 名	非線形解析学研究
担 当 者	柳下 浩紀
週 時 間 数	4
単 位 数	8
配 当 年 次	※
開講 期 間	※
授業目標	主として非線形拡散方程式の研究を通して，非線形解析学の分野の発展に少しでも貢献 すること。
授業内容•方法	非線形拡散方程式についてセミナー形式で学び，また，論文執筆を指導する。
授業計画	第1回 Laplace＇s Equation／The Classical Maximum Principle
	第2回 Poisson＇s Equation and Newtonian Potential／Banach and Hilbert Spaces
	第3回 Classical Solutions；the Schauder Approach／Sobolev Spaces
	第4回 Generalized Solutions and Regularity／Strong Solutions
	第5回 Maximum and Comparison Principles／Topological Fixed Point Theorems and Their Application
	第6回 Equations in Two Variables／Holder Estimates for the Gradient
	第7回 Boundary Gradient Estimates／Global and Interior Gradient Bounds
	第8回 Equations of Mean Curvature Type／Fully Nonlinear Equations
	第9回 Spaces of continuous and Holder continuous functions／Interpolation

第10回 Analytic semigroups and intermediate spaces／Generation of analytic semigroups by elliptic operators

第11回	Nonhomogeneous equations／Linear parabolic problems
第 12 回	Linear nonautonomous equations／Semilinear equations
第13回	Fully nonlinear equations／Asymptotic behavior in fully nonlinear equations
第14回	Interpolation Inequalities／Extension Lemmas
第15回	Boundary Curvatures and the Distance Function／Elliptic Parametric Functionals
第16回	The Evolution of Evolutionary Systems／Dynamical Systems：Basic Theory
第17回	Linear Semigroups／Basic Theory of Evolutionary Equations

第23回 Neighborhood of a periodic solution／The neighborhood of an invariant
第24回 Two examples／Modeling Considerations

第25回 Fisher＇s Nonlinear Diffusion Equation and Selection－Migration Models ／Formulation of Mathematical Problems
第26回 The Scalar Case／Systems：Comparison Techniques
第27回 Systems：Linear Stability Techniques／Systems：Bifurcation Techniques
第28回 Systems：Singular Perturbation and Scaling Techniques／References to Other Topics
第29回 Spectrum and resolvent／Basics of Functional Analysis

$$
\text { 第 } 30 \text { 回 Traveling-wave solutions/Interface dynamics }
$$

評価方法－基準 ：文献に対する批判的考察力 50% ，論文作成 50%
教材など：参考書等
P．C．Fife，Mathematical aspects of reacting and diffusing systems（Springer，1979）
D．Henry，Geometric theory of semilinear parabolic equations（Springer，1981）
D．Gilbarg and N．S．Trudinger，Elliptic partial differential equations of second order（Springer，1983）
A．Lunardi，Analytic semigroups and optimal regularity in parabolic problems （Birkhauser，1995）
G．R．Sell and Y．You，Dynamics of evolutionary equations（Springer，2002）

SMO90

科 目 名	数学リレー講義特論
担 当 者	石田 久，牛瀧 文宏，村瀬 篤，柳下 浩紀，山田 修司
週 時 間 数	2
単 位 数	2
配当年次	1年
開講 期 間	春学期
授業目標	数学の研究の最先端における動向や方法，今後の課題などを概説する。
授業内容•方法	各講義担当者の研究分野における研究の状況を，担当者の結果も交えながら，高度な予備知識を仮定せずに解説する。また，未解決の問題も紹介する。
授 業計画	第1回 単葉函数論：Bieberbach 予想
	第2回 不連続群論：Ahlfors 予想
	第3回 複素力学系：双曲性稠密予想
	第4回 トポロジーと存在定理：（1）球面の間の連続写像とその写像度。
	第5回 トポロジーと存在定理：（2）ボルスク・ウラムの定理とその証明
	第6回 トポロジーと存在定理：（3）変換群論的にボルスク・ウラムの定理をとらえ 一般化すること
	第7回 保型形式と対称性：（1）保型形式とは
	第8回 保型形式と対称性：（2）ヤコビ形式と三重積公式
	第9回 保型形式と対称性：（3）無限積と対称性，今後の課題
	第10回 反応拡散方程式：（1）一般的性質
	第11回 反応拡散方程式：（2）双安定系の進行波
	第12回 反応拡散方程式：（3）界面ダイナミクス
	第13回 結び目理論入門：（1）結び目とは
	第14回 結び目理論入門：（2）古典的不変量
	第15回 結び目理論入門：（3）量子不変量
教材など	レポート（100\％）により評価する。
	必要に応じて，プリントを配布する。
備 考	

SM091

科 目 名	整数論研究A
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講 期 間	通年
授業目 標	ヤコビ形式に関する対称性と無限積の関係を理解し，新しい現象の発見を目指す。
授業内容•方法	ヤコビ形式についての基本文献（Eichler－Zagier 等）を講読する。また，Mathematica などによる実験を行い，新しい現象の発見を試みる。
授業計画	第1回ヤコビ形式
	第2回ヤコビEisenstein 級数
	第3回 尖点形式
	第4回 テイラー展開
	第5回 Hecke作用素
	第6回 半整数ウェイトのモジュラー形式
	第7回 ヤコビ形式と半整数ウエイトのモジュラー形式の関係
	第8回 ジーゲルモジュラー群
	第9回 上半空間の幾何
	第10回 ジーゲル保型形式の定義
	第11回 ジーゲル保型形式の実例
	第12回 ジーゲル保型形式の性質
	第13回 ジーゲル保型形式のフーリエ展開
	第14回 ジーゲル保型形式のフーリエ・ヤコビ展開
	第15回 Saito－Kurokawa リフト
	第16回 テータ級数
	第17回 ヤコビ形式の環の定義と性質
	第18回 ヤコビ形式の環の構造
	第19回 ヤコビ形式の空間の次元
	第20回ヤコビ形式の零点
	第21回 ヤコビ形式の対称性の定義
	第22回ヤコビ形式の対称性と漸化式
	第23回 ベクトル系とヤコビ形式
	第24回 ベクトル系と対称性
	第25回 ベクトル系の実例
	第26回 格子とベクトル系
	第27回 格子とリ一環
	第28回 実験のための数式処理システム
	第29回 ヤコビ形式の実例と数値実験
	第30回 まとめ
評価方法•基準	研究内容（50\％）および発表（50\％）によって評価する。
教材など	参考書：Eichler－Zagier＂The theory of Jacobi forms＂
備 考	

SM092

科 目 名	整数論研究B
担 当 者	村瀬 篤
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開講 期 間	通年
授業目標	ヤコビ形式に関する対称性と無限積の関係を理解し，新しい現象の発見を目指す。
授業内容•方法	数式処理システムを学習した上で，ヤコビ形式の様々な実例計算を行い，対称性と無限積のあいだの関係について考察する。
授 業 計 画	第1回 数式処理システムの学習（1）
	第2回 数式処理システムの学習（2）
	第3回 数式処理システムの学習（3）
	第4回 数式処理システムの学習（4）
	第5回 数式処理システムの学習（5）
	第6回 ヤコビ形式の復習（1）
	第7回ヤコビ形式の復習（2）
	第8回 ヤコビ形式の実例計算（1）
	第9回 ヤコビ形式の実例計算（2）
	第10回ヤコビ形式の実例計算（3）
	第11回ヤコビ形式の実例計算（4）
	第12回ヤコビ形式の実例計算（5）
	第13回ヤコビ形式の対称性の考察（1）
	第14回ヤコビ形式の対称性の考察（2）
	第15回ヤコビ形式の対称性の考察（3）
	第16回 ヤコビ形式の対称性の考察（4）
	第17回ヤコビ形式の対称性の考察（5）
	第18回 無限積としてのヤコビ形式（1）
	第19回 無限積としてのヤコビ形式（2）
	第20回 無限積としてのヤコビ形式（3）
	第21回 無限積としてのヤコビ形式（4）
	第22回 無限積としてのヤコビ形式（5）
	第23回 対称性と無限積（1）
	第24回 対称性と無限積（2）
	第25回 対称性と無限積（3）
	第26回 中間報告漼備（1）
	第27回 中間報告漼備（2）
	第28回 中間報告漼備（3）
	第29回 中間報告
	第30回 まとめ
評価方法•基準	研究内容（50\％）および発表（50\％）によって評価する。
教材など	参考書：Eichler－Zagier＂The theory of Jacobi forms＂

SM095

科 目 名	応用位相研究A
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配 当 年 次	1年
開講 期 間	通年
授業目標	低次元位相幾何学および位相空間における計算理論および 3 次元空間における球充填問題などを研究する。
授業内容•方法	論文，書籍を読み，セミナー形式で解説を行う。コンピュータを用いて計算実験を行う。研究結果を論文としてまとめる。
授業計画	第1回 読むべき低次元位相幾何学に関する論文および書籍を探す
	第2回 選択した低次元位相幾何学に関する論文および書籍 1 を読む
	第3回 選択した低次元位相幾何学に関する論文および書籍 2 を読む
	第4回 選択した低次元位相幾何学に関する論文および書籍3を読む
	第5回 選択した文献についてセミナーを行ら
	第6回 取り組むい゙き研究の対象をしぼる
	第7回 研究対象に関する文献を探す
	第8回 研究対象に関する文献1を読む
	第9回 研究対象に関する文献2を読む
	第10回 研究対象に関する文献3を読む
	第11回 研究対象に関する文献4を読む
	第12回 研究対象に関する文献をさらに読む
	第13回 研究課題を探す
	第14回 研究課題を見つける
	第15回 研究課題に関する先行する結果がないか調べる
	第16回 研究課題に関する先行する結果についての文献1を読む
	第17回 研究課䫁に関する先行する結果についての文献2を読む
	第18回 研究課題に関する先行する結果についての文献3を読む
	第19回 研究課題に関する先行する結果についての文献4を読む
	第20回 研究課題に関して，先行する結果をさらに進めることができるか考える
	第21回 研究課題に関して，先行する結果をさらに進めることができるか考える
	第22回 研究課題が，先行する研究によって解かれていれば，他の課題を探す
	第23回 研究課題が，先行する研究によって解かれていれば，他の課題を探す
	第24回 課題を探すため論文1を読む
	第25回 課題を探すため論文 2 を読む
	第26回 課題を探すため論文 3 を読む
	第27回 課題を探すため論文4を読む
	第28回 先行研究に残された課題を探す
	第29回 ここまでの研究について，まとめる
	第30回 中間結果として発表をする
評価方法•基準：論文および研究発表の内容 100%	
教材など	研究が始まった後で適宜指定する
備 考	

科 目 名	応用位相研究 B
担 当 者	山田 修司
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開 講 期 間	通年
授 業 目 標	低次元位相幾何学および位相空間における計算理論および3次元空間における球充填問題などを研究する。
授業内容•方法	論文，書籍を読み，セミナー形式で解説を行う。コンピュータを用いて計算実験を行う。研究結果を論文としてまとめる。
授 業 計 画	第1回 先行研究に残された課題を探す
	第2回 残された課題について，他の論文 1 を読むことで解決策を探す
	第3回 残された課題について，他の論文 2 を読むことで解決策を探す
	第4回 残された課題について，他の論文 3 を読むことで解決策を探す
	第5回 これまでの研究結果についてセミナーを行う
	第6回 課題が解けそうであれば，それについて研究を行う
	第7回 課題が解けそうであれば，それについてさらに研究を行う
	第8回 研究結果についてセミナーを行う
	第9回 得られた結果をさらに進めることができないか考える
	第10回 そのために論文をさらに読む
	第11回さらに論文を読む
	第12回 論文を元に，独自の発想で問題解決に挑む
	第13回 研究結果をセミナーで発表する
	第14回セミナーでの指摘を元に，再度考える
	第15回 証明などを再考して，さらに簡潔なものをめざす
	第16回 論理に飛躍がないか，調べる
	第17回 研究結果をまとめるため，論文にすることを考える
	第18回 これまでの研究結果についてセミナーを行う
	第19回 論文の書き方について調心゙る
	第20回 文書作成ソフトの使い方について学習する
	第21回 論文における英文の書き方について，学習する
	第22回 一応まとめた論文についてセミナーをする
	第23回 研究集会での発表を考える
	第24回 研究集会での発表について漼備をする
	第25回 論文の投稿を考える
	第26回 論文の投稿先を選ぶ
	第27回 論文の投稿先を行ら
	第28回 論文に訂正を指示されたとき，書き直しをする
	第29回 論文の再投稿をする
	第30回 最終的な研究発表をする
評価方法•基準	論文および研究発表の内容 100\％
教 材 な ど	研究が始まった後で適宜指定する。
備 考	

SM097

科 目 名	変換群論研究A
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配当年次	1年
開講 期 間	通年
授業目標	代数トポロジーを用いた変換群論の手法を獲得し，新しい現象の発見を目指す。
授業内容•方法	変換群論についての高度な文献の中から第 1 章を購読する。必要に応じて，ほかの文献 も参照する。
授 業 計 画	第1回 基本概念 1
	第2回 基本概念 2
	第3回 一般的注意
	第4回 例 1
	第5回 例 2
	第6回 変換群論の基本的な定理 1
	第7回 変換群論の基本的な定理 2
	第8回 ファンクター的な捉え方 1
	第9回 ファンクター的な捉え方 2
	第10回 微分可能多様体
	第11回 管状近傍
	第12回 スライス定理
	第13回 部分群の族 1
	第14回 部分群の族 2
	第15回 部分群の族 3
	第16回 同変写像 1
	第17回 同変写像 2
	第18回 バンドル 1
	第19回 バンドル 2
	第20回 バンドル 3
	第21回 バンドル 4
	第22回 ベクトルバンドル 1
	第23回 ベクトルバンドル 2
	第24回 オービットカテゴリー
	第25回 基本群
	第26回 被覆空間
	第27回 変換群論の代数 1
	第28回 変換群論の代数 2
	第29回 変換群論の代数 3
	第30回 まとめ
評価方法•基準 ：発表（50\％），提出物（50\％）	
教材など	Tammo tom Dieck＂Transformation Groups＂Walter de Gruyter
備 考	

SM098

科 目 名	変換群論研究 B
担 当 者	牛瀧 文宏
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開講 期 間	通年
授業目 標	特に同変障害理論を理解し，新しい現象の発見を目指す
授業内容•方法	変換群論についての書物を講読とあわせて，具体的な現象への適応を考える。
授業計画	第1回 同変CW複体 1
	第2回 同変CW複体 2
	第3回 複体の間の写像（一般論）
	第4回 複体の間の写像（具体例への適応）
	第5回 ホモロジーとコホモロジー 1
	第6回 ホモロジーとコホモロジー 2
	第7回 同変コホモロジー
	第8回 ホモトピー論の復習 1
	第9回 ホモトピー論の復習 2
	第10回 局所系
	第11回 障害理論（通常版）1
	第12回 障害理論（通常版） 2
	第13回 障害理論（同変版）1
	第14回 障害理論（同変版）2
	第15回 障害類の計算 1
	第16回 障害類の計算 2
	第17回 写像度
	第18回 ホップの分類定理 1
	第19回 ホップの分類定理 2
	第20回 ボルスクウラムの定理との関連の考察
	第21回 表現空間の間の写像
	第22回 表現空間の間の写像のホモトピー類
	第23回 ボルスクウラム型定理への応用 1
	第24回 ボルスクウラム型定理への応用 2
	第25回 ボルスクウラム型定理への応用 3
	第26回 中間報告準備 1
	第27回 中間報告準備 2
	第28回 中間報告準備 3
	第29回 中間報告
	第30回 まとめ
評価方法•基準	研究内容（60\％），発表（40\％）
教材など	Tammo tom Dieck＂Transformation Groups＂Walter de Gruyter そして適宜，読むい゙き論文を指南する。
備 考	

SM105

SM106

科 目 名	非線形解析学研究B
担 当 者	柳下 浩紀
週 時 間 数	4
単 位 数	4
配 当 年 次	2年
開講期 間	通年
授業目標	非線形放物型方程式の性質を理解し，より基本的な知見の提出を目指す。
授業内容•方法	非線形放物型方程式についての基本的な文献講読し，さらなる知見の発見を試みる。
授 業計画	第1回 The Evolution of Evolutionary Systems
	第2回 Dynamical Systems：Basic Theory
	第3回 Linear Semigroups
	第4回 Basic Theory of Evolutionary Equations
	第5回 Nonlinear Partial Differential Equations
	第6回 Navier Stokes Dynamics
	第7回 Basic Principles of Dynamics
	第8回 Inertial Manifolds and the Reduction Principle
	第9回 Examples of nonlinear parabolic equations in physical，biological and
	第10回 Existence，uniqueness and continuous dependence
	第11回 Dynamical systems and Liapunov stability
	第12回 Neighborhood of an equilibrium point
	第13回 Invariant manifolds near an equilibrium point
	第14回 Linear nonautonomous equations
	第15回 Neighborhood of a periodic solution
	第16回 The neighborhood of an invariant manifold
	第17回 Two examples
	第18回 Modeling Considerations
	第19回 Fisher＇s Nonlinear Diffusion Equation and Selection－Migration Models
	第20回 Formulation of Mathematical Problems
	第21回 The Scalar Case
	第22回 Systems：Comparison Techniques
	第23回 Systems：Linear Stability Techniques
	第24回 Systems：Bifurcation Techniques
	第25回 Systems：Singular Perturbation and Scaling Techniques
	第26回 References to 0ther Topics
	第27回 Spectrum and resolvent
	第28回 Basics of Functional Analysis
	第29回 Traveling－wave solutions
	第30回 Interface dynamics

評価方法•基準：基本文献に対する批判的考察力 80% ，発表 20%
教 材な ど：参考書等
P．C．Fife，Mathematical aspects of reacting and diffusing systems（Springer，1979）
D．Henry，Geometric theory of semilinear parabolic equations（Springer，1981）
D．Gilbarg and N．S．Trudinger，Elliptic partial differential equations of second order（Springer，1983）
A．Lunardi，Analytic semigroups and optimal regularity in parabolic problems （Birkhauser，1995）
G．R．Sell and Y．You，Dynamics of evolutionary equations（Springer，2002）

